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1. INTRODUCTION

In this paper we are concerned with sums of k'* powers for k in the range
5 <k < 15. As usual, we let G(k) denote the smallest number s such that every
sufficiently large natural number is the sum of, at most, s k! powers of natural
numbers. The last few years have seen remarkable progress in the stubborn problem
of reducing the upper bound for G(k); in Table 1.1 we display the upper bounds
for G(k) which have been obtained recently in the range considered here.
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k 5 6 7 8 9 10 11 12 13 14 15
Vaughan [6, 7] 21 31 45 62 82
Vaughan [8, 9] 19 29 41 57 75 93 109 125 141 156 171
Briidern [1] 18
Vaughan and Wooley [10] 18 28 92 108 124 139 153 168
Wooley [13] 27 36 47 55 63 70 79 87 95 103
Table 1.1.

By exploiting the flexibility of the new iterative methods in Waring’s problem,
we now achieve the following bounds.

Theorem 1.1. G(5) <17, G(6) <25, G(7) <33, G(8) <43, G(9) < 51.

The calculations involved in the proofs are decidedly heavy, especially in the
exceptionally awkward case k = 6, and in general grow steadily with k. However,
for larger k there is an increasingly common pattern. Thus, whilst we have not
exhaustively analysed for such k all possible variants of our methods, we have
performed sufficient calculations to establish, in combination with results in [12]
and [16], the upper bounds G(10) < 59, G(11) < 67, G(12) < 76, G(13) < 84,
G(14) <92, G(15) < 100.

There are many applications of the methods we develop, these depending on the
underlying mean value theorems. For example, we are able to improve results on the
distribution of fractional parts of sequences an®, and on the solubility of systems
of simultaneous additive equations. We intend pursuing some of these applications
in a future memoir. Furthermore, we have found some rather technical refinements
which permit the above bounds for G(k) to be improved when k = 6 and k = 8.
Thus, in the sequel papers [11] and [12], we describe some delicate innovations
which permit the mean values of this paper to be slightly better exploited, thereby
establishing the bounds G(6) < 24 and G(8) < 42.

As is usual in much of the modern work on Waring’s problem, the method is
dependent on upper bounds for the number of solutions of auxiliary equations of
the type

i+ =y 44k, (1.1)

with z;,y; € A(P, R), where throughout we write
A(P,R) ={1 <n < P:pprime, p|n implies p < R}.

In Wooley [13] an improvement over the strategy of Vaughan [8, 9] is established
which, through the use of more efficient differences, enables one to obtain better
estimates than have been obtained hitherto for the number of solutions of (1.1)
when k£ > 6. In that memoir, no attempt was made to exploit the finer properties of
the polynomials arising from the efficient differencing procedure. Furthermore, the
underlying themes of this improved strategy permit a more flexible approach than
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was employed therein. In this paper we take advantage of this greater flexibility
in a number of ways. This requires the exponential sums arising from the efficient
differencing procedure to be examined in some detail with regard to their second
and fourth moments, and their supremum on appropriate choices of minor arcs.
This we do in §§3 and 4 respectively. In this way we are able to obtain satisfactory
bounds for the number of solutions of (1.1) for appropriate ranges of k and s.

In order to set the overall pattern we first of all treat fifth powers. In §§5 and 6
we apply the results of §83 and 4 respectively. In the final iteration of the method,
we are presented with the recurring problem that, in our estimate for the number
of solutions of equation (1.1), the dominant contribution arises from the “major
arcs”. We overcome this obstacle in §7 by modifying the arguments of Vaughan
and Wooley [10]. Having illustrated the framework of our method with fifth powers,
we apply the results of §3 to higher values of k in §§8, 9, 10 and 11. It then remains
to complete our arguments by applying the results of §4. Thus we consider sixth
powers in §12. In §13 we consider some rather general arguments of use in the
Hardy-Littlewood dissections used for larger k. Finally the values k = 7,8,9 are
treated in §§14, 15, and 16 respectively.

Before proceeding to the details, in §2 below we describe the strategies which
underly our new analysis, and also introduce some notation.

The authors thank the Institute for Advanced Study for its generous hospitality
during the period in which this paper was written.

2. PRELIMINARY LEMMATA

The methods we adopt lead to more complex iterative processes than have been
used in Waring’s problem hitherto. We take this opportunity to explain the under-
lying themes in a little detail for k an arbitrary integer exceeding 2. First we shall
establish some notation, which we use in this section and in those following.

Throughout, s will denote a positive integer, and € and 1 will denote sufficiently
small positive numbers. We take P to be a large positive real number depending
at most on k, s, € and n. We use < and > to denote Vinogradov’s well-known
notation, implicit constants depending at most on k, s, € and n. We make frequent
use of vector notation for brevity. For example, (c1,...,¢;) is abbreviated to c.
Also, we shall write e(a) for €?™* and [z] for the greatest integer not exceeding
2. We use p to denote a prime number, and write p®||n when p*|n but p**! /n.
Finally, ||z|| denotes minycz |z — y|.

In an effort to simplify our analysis, we adopt the following convention concerning
the numbers € and R. Whenever € or R appear in a statement, either implicitly or
explicitly, we assert that for each € > 0, there exists a positive number 7 (e, s, k)
such that the statement holds whenever R = P", with 0 < n < (e, s, k). Note that
the “value” of €, and 79, may change from statement to statement, and hence also
the dependency of implicit constants on € and n. Thus, for example, if f < P°RF
and g < P°R?F then we shall conclude that fg < P® without comment. Notice
that since our iterative methods will involve only a finite number of statements
(depending at most on k, s and ¢), there is no danger of losing control of implicit
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constants through the successive changes implicit in our arguments. Finally, we use
the symbol = to indicate that constants and powers of R and P¢ are to be ignored.
For each s € N we take ¢, = ¢; s (i = 1,...,k) to be real numbers, with
0 < ¢; < 1/k, to be chosen later. We then take
P =2P, M;=P%, Hj=PM" Q;=Pj(M.. M) " (1<j<k).

For the sake of concision, we shall also adopt the convention of writing

J J
I:I]:HHl and MJ:HMZR
i=1 i=1
We define the modified forward difference operator, A}, by

AY (f(x);him) =m™" (f(z + hm*) — f(z)),

and define A} recursively by

A;Lrl (f(z);ha, ... hjy1; ma,...,mjy1)
=A] (A;‘ (f(w);hl,...,hj;ml,...,mj);hj+1;mj+1).
We also adopt the convention that Af (f(z); h;m) = f(x).
For 0 <j <k let
Wy =V;(z;ha,. .., hysma, . ymy) = A (f(2); 2R, ..o, 2hy3ma, .. my)

where f(z) = (2 — hlm’f . hjmé?)k.

Write
fila) = Z e(az®).
r€A(Q;,R)
Also, write
Fi(a) = Z e(a¥;(z;h;m)),
z,h,m

where the summation is over z, h, m with

1<2< P, M <m; <M;R, m; € A(P,R), 1<h; <27'H; (1<i<j).

(2.1)

(Notice in particular the condition m; € A(P, R). In Wooley [13] the variables m;
were permitted to range over a complete interval, whereas the analyses of §§2 and
3 of that paper in fact allow the restriction to the set A(P, R)).

We let Sgk)(P, R) denote the number of solutions of the equation

with z;,y; € A(P,R) (1 <7 < s). When no confusion is possible, we shall suppress
the superscript k. Suppose that the real numbers A; and ps (1 < s < oo) have the
property that

S (P, R) < PM+ and SPM(P,R) < Prete (2.2)

Such numbers certainly exist, since we may trivially take Ay = 2s and ps = 2s.
We list below some useful lemmata.
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Lemma 2.1. We have
1 1
/ | Fo(@)? fo(a)** | dow < PEM7! (PM1Q§S + / |F1 () f1(a)?) da) . (2.3)
0 0

Proof. This follows from Lemma 2.3 of Wooley [13], and the argument of the proof
of Lemma 3.1 of Wooley [13], on considering the underlying diophantine equations.

We shall abbreviate an inequality of the form (2.3) symbolically by
R g
Lemma 2.2. Whenever 0 <t<s and1<j<k—1, we have
1 R o
/O | Fj(0) f5()?| dov < PE(QY) 2 (H; M M 5% T 10) V2, (2.4)
where

1
7 "~ >\25—t S—
Tjy1 = Tj1(Ps A @) = PH M Q5 +/ |Fi1() fi1(a)7% | da. (2.5)
0

Proof. By Schwarz’s inequality we have

/ |y (@) ()| da < (/ U )P da)m (/ | (@) £y () da

The proof of the lemma now follows by the arguments of the proofs of Lemmata
2.3 and 3.1 of Wooley [13], on considering the underlying diophantine equations.

1/2

We abbreviate an inequality of the form (2.4) symbolically by

2 4s—2t
Eifi® — Fiafis

72

There are two other ways of estimating the integral on the left hand side of equation
(2.4).
(i) We may apply Holder’s inequality in the form

1
/ |Fj (@) fi(a)® | da < I ISUSUS
0

where

1
L= [ 1@ da (m=1.2
0
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and )
Uu:/ £ (@) do (u = v, w),
0

in which v and w are non-negative integers and a, b, ¢, d are non-negative real num-
bers with

a+b+c+d=1 , 2a+4b=1 , wvc+wd=s

The second and fourth power mean values of F; may be estimated in terms of the

number of solutions of certain diophantine equations. Also, we have U, < Q?”‘Le

and U,, < Q;‘ﬁs. We abbreviate an inequality (H) of this form symbolically by

Fy 3 = (F)U(FAM(F2)° (£

There is, of course, the possibility of using higher moments of F;(«). However,
estimates for such moments are too weak to be of value in the current state of
knowledge.

(ii) We may apply the Hardy-Littlewood method along the lines of §3 of Vaughan
[8]. We then abbreviate the resulting inequality (M) symbolically in the form
Fyf3* = (Fj)(f7).

J

By considering the underlying diophantine equations, we have

Ss+1(P, R) <</0 | Fo()? fo()**| day,

and hence we may use a sequence Y of connected inequalities (in the obvious sense)
to bound Ss(@, R) in terms of Sy(Q’,R) (t = 1,2,...). Such a sequence will be
called an iterative procedure. A finite subsequence of a sequence (3;)$° of iterative
procedures will be called an iterative scheme.

Thus far, we have merely indicated possible methods for estimating certain inte-
grals, without indicating how such estimates may be used to obtain upper bounds
of the form (2.2) for Sgk)(P, R). We now outline a possible strategy.

Suppose that we have taken j + 1 differences, and so are left to bound an ex-
pression of the form Tj,1, as defined by equation (2.5). By applying a process of
the type (H) or (M), we may obtain a bound of the form

o Aos_

Tj1 < PHiM; Q" + V(P A ), (2.6)
for some expression V' (P; A; ¢) depending explicitly only on P, A, and ¢ = (qﬁz)zill )
We may then obtain a bound for 7},; by minimising the expression on the right-
hand side of (2.6). In our applications, a close approximation to the minimum
occurs when a choice of ¢ is taken so that

PH;M;1Q2 " =~ V(PiA; ).
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This relation determines some equation,
Aj+1(Xi9) =0, (2.7)

connecting the ¢; (1 <i < j+ 1) in an obvious manner.
With the optimal choice of ¢ given by (2.7), the bound (2.4) now becomes

! o 1/2
s € s—  YA2s—t
/O |Fj() fi(a)**|da < P (PHj?MfM;*H?tQ; Q51 ) .

This bound may now be used to bound an expression of the form 7} via Lemma
2.2, and we obtain an inequality of the form

e ] "~ s r72 1 s— s A2s—t\1/2
Ty < P*(PH; A M;Q) + (PHIMEMET* Q) Qi) 7))

Optimising the right-hand side gives rise to a further equation connecting the ¢,
say Aj(A;¢) = 0. We may continue this process, next bounding an expression of
the form

/0 |Fj1 (@) fj—1 ()] da

in like manner, and so on.
In this way, for each s we obtain j + 1 equations

AP =0 (1<i<j+1),

in j + 1 variables ¢; (1 <i < j+ 1). These permit us to solve for ¢ in terms of A,
and provided that a solution is found with 0 < ¢; < 1/k for each 1 < i < j 41,
then it follows that

1
/ |Fo(a)? fo(a)®| da < PMHEMP Q"
0

with ¢1 given by the solution ¢ of the simultaneous equations
AP (X;¢) =0.
It therefore follows that /
Ss+1(P7 R) < P)\S+l+67
with
)\;+1 = )\5(1 — ¢1) + 1 + 28@51.

By adopting this entire process for s = 1,2,..., we may define a new sequence of
exponents, A", by taking

A =min{\,,\,} (s=1,2,...).

S
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Further, we have the sequence of bounds
Sy(P,R) < P+,

In principle we may obtain the optimal X by solving the equations A = AT. Indeed,
for smaller values of s, and in particular when the A; with ¢ > s do not occur
explicitly in the formulae involving A\ , this may be the easiest way to proceed. In
practice, however, we proceed to calculate values for A as follows. Starting from
a known sequence A we calculate AT as described above. Then we use the A\ in
place of the A4 in the equations A(r)()\; ¢) = 0. Thus, by applying this iterative
scheme repeatedly, we obtain a sequence of sequences (Aé”) with AU < A0 for
each r and s. Since diagonal solutions provide us with the lower bound )\gr) > s,
the sequence must converge to some limit (A\¥). Moreover, A* has the property that

S¢(P,R) <« PA:te,

The method outlined above involves an iteration process in which each /\S”“)

(1 < s < o0) depends on each AL (1 < s < o0). It will become plain that certain
economies may be made in this procedure. Thus, for example, for s exceeding some
so we have A\ = 2s — k. Further, for certain values of s the iterative procedure for
As may be independent of \; for ¢ > s. In this latter case it may then be possible to
obtain A¥ independently of A} (¢t > s). In the sections which follow we discuss what
were found to be the optimal methods for bounding the )\gr). In many instances
the method is appropriate only for a single value of k. Nonetheless, for the purpose
of more clearly indicating the recurring themes, we shall analyse the method as it
applies more generally.

3. ESTIMATES FOR THE NUMBER OF SOLUTIONS OF AUXILIARY EQUATIONS

Our first step in facilitating the analysis outlined in the previous section will be
to obtain estimates for the number of solutions of certain auxiliary equations, these
enabling us to make use of the inequality

Fy 20— (F2)(FOM(F2)(F2)",

J J J J

We first need to set up some notation.
Let us write & for hym¥. Then we have

\I/j = A; (f(z);th,...,th;ml,...,mj),

with
fR)=(—& - =&
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Thus, in a manner similar to that of §2 of Vaughan [8], we obtain

\I/j: Z Z Glﬁj(mlm])*k(z+91f1++eg§3>k

=+1 0j==%1
- Z Y Yy M i) (06)"
- ! ! Nk
0j=%+1 up>0 u; >0 Uo- ul U]-(ml ce m])
uo+uy+---+u; ==k

k129 h hz“§2”1...£2.vj
= 2.0 -

j
! 2 1 20, + 1)
u!(2v v !
u>001>0 ;>0 1 - (205 +1)
u42v1+--+2v;=k—j

In particular, we obtain

k12k=3 , =2,
Ui o= 3 hi...hg_o |32+ ; &, (3.1)
Jlok—7 k—4 k—4
Wpoa=—p—hi. e | 152143022y 2410 30 geF+3) ¢
i=1 1<i<j<k—4 i=1
(3.2)

Let R;S) (P; ¢) denote the number of solutions of the diophantine equation

qu (zl,h(z m@) qu (wl, : <>) (3.3)

=1

with

1 S Zi, Wy S P 1 S hgz),ggl) S 2j_th ; (34)

M, <m0l <mpr , w2 eAPR) (3.5)

for1 <t<j,1<i<s.
We shall be concerned only with estimates for RS-S) with s = 1 or 2, the estimates
obtainable by current methods being otherwise too weak to be of value. We begin

by establishing a relation between R§~2), and R§ ) and R§21

Lemma 3.1. When 1 < j <k — 2, we have

2 o 1 5 1
Proof. On considering the underlying diophantine equation, by (3.3) we have

R?) (P ) = /O IFy (o))" do (3.6)
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But by applying standard Weyl differencing, combined with Cauchy’s inequality,

we have
) o .
|Fj(a)|” < PHIM; + H;M; |G(a)|,

where

Gla)y= > Y. ela(¥(z+hshym) - ¥ (z;h;m))),

h,m 1<h<P; 1<z<P;—h

and the summation over h and m is over the ranges given in (3.4) and (3.5). Then
from (3.6) we have

1 1
R®(P; ¢) <<131L1}’J\4j2/0 |Fj(a>!2da+Hij/0 |G Fj(@)?| da.

Then by applying Schwarz’s inequality, and considering the underlying diophantine
equations, we have

o~ - 1/2
RP(P;¢) < PHINZRSY (P; ¢) + H; M, (R (Pig) - S)
where S denotes the number of solutions of the equation
AT (V;(z;hym); hs 1) = AT (¥ (w; g;m); g5 1),

with the variables h, g, m, n, satisfying (3.4) and (3.5), and with 1 < h,g < P,
1<2<P;j—hand1<w<P;—g. But we have

2F AT (T,(z;h;m); by 1) = Ab (22 —26 — - — 2¢;)%;4h, 2h;m, 1)
= \Ijj+1(2z + h’7 2h7 ha m, 1)7

and hence the result follows on noting that 2z + h < 2P; = Pj4;.

Next we provide an estimate for R;l) which is valid uniformly in k£ and j. Later
we shall refine this estimate for a fairly large set of k£ and j.

Lemma 3.2. When 1 < j <k — 2, we have

1) p. 1+e 77 272
R;(P;¢) < PT°H;M;.

Proof. We have ,
RV (Pig) =" (Z R(n; h)> ,
n h

where the second summation is over h satisfying (3.4), and where for a fixed h,
R(n;h) denotes the number of solutions of the equation ¥;(z;h;m) = n with =
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and m satisfying (3.4) and (3.5). But if z,h and m satisfy (3.4) and (3.5), then
VU (z;h;m) is divisible by hq ... h;, and further is non-zero. Therefore

2

RV((P;9) <> Y -3 R(msh)

n hi|n hjln

But R(0;h) = 0, so on combining standard estimates for the divisor function with
Cauchy’s inequality, we obtain

RV(P;¢) < P> R(n;h)? (3.7)
h n

Further, by assigning values to the m, and solving directly for z, we have R(n;h) <
M;, and hence the desired conclusion follows from (3.7).

Before we consider refinements of the above lemma, we require a definition.
When k — j is odd, or when kK — 5 = 2 or 4, we put J = [?} We then define

K;(P; @) to be the number of solutions of the system of diophantine equations
J
Zh?r(m?k —n¥fy =0 (1<r<J) (3.8)
i=1
with h, m and n satisfying (3.4) and (3.5). Notice, in particular, that by counting
diagonal solutions of (3.8), we have
K;(P;¢) > H;M;. (3.9)

We now establish a reduction formula relating Rg.l) with Kj.

Lemma 3.3. Suppose that 1 < j < k—2, and k — j is odd, or k — j = 2 or 4.
Then )
R}V (P; ¢) < P'*°K;(P; ¢).

Proof. In each of the cases under consideration, we may start by observing that
hy ...hj divides ¥;(z; h;m), and so as in the proof of Lemma 3.2 we have

M p. *( D.
Rj (P7¢) <<PER <P7¢)7
where now we write R*(P; ¢) for the number of solutions of the equation
¥;(z;h;m) = ¥;(w; hyn) (3.10)

with z,w,h, m, n satisfying (3.4) and (3.5).
We now divide into cases.
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(i) k —j = 2. Then from (3.1), the equation (3.10) in this case becomes
k—2
3(2% —w?) + Z hZ(m?*F —n2F) = 0. (3.11)
i=1

From (3.8), the number of solutions with z = w is
< PKj_s(P; ). (3.12)

Now count solutions of (3.11) with z # w. We may assign h, m and n in
O(ﬁk_zM 2 ,) ways. Fixing this choice, we may use standard estimates for the
divisor function to deduce that there are O(P¢) solutions of this type in z and w.
Then the total number of solutions of this type is

< P*Hy_oM? , < P Hy oM _s. (3.13)

When k — j = 2, the result now follows on combining (3.9), (3.12) and (3.13).
(i) k — j = 4. Then from (3.2), the equation (3.10) in this case becomes

15(u? —v?) = 10(E3 —T3) +2(E, — I'y), (3.14)

in which

N
|
IS
o

—4
himi*

VR A
1

(11

[\v]
I

)
=1 7

and v,I'1, 'y are defined similarly in terms of w,h and n.

Consider first solutions of (3.14) counted by R*(P; ¢) with u # v. We may assign
h,m and n in O(I:I s M 2 ,) ways. Fixing this choice, we may then use standard
estimates for the divisor function to deduce that there are O(P¢) solutions of this
type in v and v, and hence in z and w. Then the total number of solutions of this
type is

< PEH;_4M? , < PYYeH, 4 My _y. (3.15)

Now consider solutions of (3.14) counted by R*(P; ¢) with u = v. Then we have
k—4

(2> —w?)+ > hi(mi* —n¥) =0, (3.16)
i=1

As in case (i), the number of solutions with z # w is
< P1+Eﬁk_4Mk_4. (317)

Otherwise z = w, and from (3.16) we have =1 = I'1, and hence from (3.14), 25 = I's.
Then from (3.8), the total number of solutions of this type is

< PKj_4(P; $). (3.18)
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Then when k — j = 4, the result follows by combining (3.9), (3.15), (3.17) and
(3.18).
(iii) k — j odd. Write k — j = 2J + 1. Then

J
U,i(z;hym) =Chy...hjz <Z CTZQT) (3.19)

r=0

where C' depends at most on k and j, and ¢, = ¢,.(€) (0 < r < J) is a symmetric
polynomial in £7,...,&7 of degree J — r, with coefficients depending at most on k
and j.
On noting that ¥,(z;h;m) is divisible by z, hq,...,h;, we find, as in the proof
of Lemma 3.2, that
RV (P; ) < P°R*(P; ).

where now we write RT(P; ¢) for the number of solutions of the equation
¥;(2;h;m) = ¥;(2; h;n), (3.20)

with z,h,m, n satisfying (3.4) and (3.5). But on noting (3.19), equation (3.20)

becomes
J

Z (cr(hami,. .. ,hjm;‘?) —cp(hynk, ..., hjnf)) 22" =0. (3.21)
r=0

Consider first solutions of (3.21) with

cr(hamb, ..., hjm?) 2 ¢ (hank, ..., hjn?)
for some r. We may assign h,m and n in O(ﬁj]\Z/jQ) ways. Fixing this choice,
we have that z is determined by a non-trivial polynomial. So there are O(1) such
solutions in z, and hence the number of solutions of this type is

< H; M} < PH;M;. (3.22)

Otherwise

cr(hamb, ..., hjmﬁ) =c.(hank, ..., hjn‘];)

for 0 < r < J. But then, by using elementary results on symmetric polynomials,
we have '
J
Y B (mIt—niFy=0 (1<r<).

=1

Then from (3.8), the number of solutions of this type is

< PK;(P; ). (3.23)
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When k — j is odd, the result now follows on combining (3.9), (3.22) and (3.23),
and this completes the proof of the lemma.

We must now attend to the matter of bounding K;(P;¢). We might hope
to achieve the essentially best possible bound K;(P;¢) < P“:MjI:I j, dominated
by diagonal solutions. In the light of our estimates for Ss(P, R), this may seem
excessively optimistic, yet we very nearly achieve this goal. Unfortunately our
methods are somewhat diverse, and will take a little time to explain. More precise
estimates can be obtained by our methods, but we choose simplicity of exposition.
We start with a useful lemma, depending for its effectiveness on estimates for the
number of solutions of a homogeneous system of equations.

We define S5(Q, R;t, k) to be the number of solutions of the system of diophan-

tine equations
S

Y@t -y =0 (1<n<t)

=1

with z;,y;, € A(Q,R) (1 < i < s). We note that estimates for Ss(Q, R;t,k) are
available from Wooley [14, 15].

Lemma 3.4. Suppose that 2 < j <k —2. Let | = [j/2], and define

Lin(P) = H 'Sy (MR, R; J, k) + (S.(M; R, R; J, k),

)

and
L;,(P) j even,

L (P) = |
{(Li,l(P)Lz‘,zH(P))l/z j odd.
Then

1/j
K;(P;¢) < P°H (Hmm{L” : MRRJk)}) :

Proof. Write

gr(a; H,Q,R) = Z Z e(ash® 2% ... 4 a1h?2?F)

1<h<H |z€ A(Q,R)

Then we have
j . .
Kj(P; ¢) <K / Hgg(a;QJ_ZHi,MiR, R)da, (324)
T -

where here, and throughout, we write T for [0, 1].
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As applications of Holder’s inequality, we have
gQ(a; Ha Qv R)] < H]_lg2j<a7 Ha Q7 R)7
gQ(a; H? Q: R)] < H]_Zgj (aa H? Qa R)27
g?(a; H7 Q: R)] < Hj—ng_l(a; H7 Q7 R)gj+1(a7 H7 Q7 R)

But by considering the underlying diophantine equations, we have
/ goj (e H,Q, R)dox < HS,;(Q. R: J.). (3.25)
TJ
Also, for each integer r we have that

/ g?r(a;HaQaR)Qda
T

is bounded above by the number of solutions of the system of diophantine equations

T T

WY (@t -yt =gty (i —of™t) (1<n<J),  (3.26)

i=1 i=1
with 1 < h,g < H and z;, y;, u;, v; € A(Q, R). The number of solutions counted in
which the left hand side of (3.26) is zero is

< (HS(Q,R; J. k).

Meanwhile, if the left hand side is non-zero, using a by now familiar argument,
we may bound the number of solutions of (3.26) by P°H!™¢ times the number of
solutions of the system

T T

D@t =yt = (Wit 0Pt (1<n< ),

with x;, y;, u;, v; € A(Q, R). Since this is < S3,.(Q, R; J, k), we have
/ gor(a; 277 H; My R, R)*da < PEH?L; . (P). (3.27)
TJ

Furthermore, by using Schwarz’s inequality combined with the analysis above, we
deduce that when u is an odd integer, we have

/ Gu_1(c Hy, My R, R)gus1(cx: Hy, My R, R)dex
’]I‘J

& P°H? (L y—1(P) Ly i1 (P)2.
(3.28)

Now applying Holder’s inequality to (3.24), we may combine (3.25), (3.27) and
(3.28) to complete the proof of the lemma.

Before describing our final approach to bounding Kj;, we shall require an ele-
mentary lemma on solutions of binary quadratic forms.
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Lemma 3.5. The number of solutions, S(a,b,c; P), of the equation
az® +by* =c (abc #0)

with 1 < z,y < P is < (abcP)e.

Proof. The conclusion of the lemma follows in an elementary manner from results
of Chapter 11 of Hua [2]. We shall therefore merely sketch the required argument.

We first note that by changes of variable, combined with standard estimates
for the divisor function, it suffices to show that when d is a non-zero square-free
number, then the number of solutions of the equation

X2 —dY?=n (n#0) (3.29)

with (X,Y) =1and 1 < X,Y < Pis O((ndP)?). By Theorem 4.1 of Hua [2],
for each solution (X,Y") of (3.29), there exists a unique integer [, with 0 <1 < 2n,
satisfying 2 = 4d (mod 4n). Since d is square-free, the number of solutions of this
congruence is O(n), and so it suffices to show that there are O((ndP)®) solutions
of (3.29) corresponding to each .

(i) Suppose that d < 0. By Theorem 4.3 of Hua [2], there are at most 4 solutions
(X,Y) of (3.29) corresponding to each .

(ii) Suppose that d > 0. Then it follows from Theorems 4.2 and 4.4 of Hua [2]
that, if (X,Y) and (X’,Y”’) are any two solutions of (3.29) corresponding to the
same [, then

X +VdY = +(t + uVd)* (X' +Vdy"), (3.30)

for some integer k, and choice of + or —. Here (¢,u) is the unique integer solution
of the equation t2 — du? = 1 with ¢ > 0,u > 0, and ¢ + uv/d least. But for each
solution of (3.29) we have 1 < |X + vdY| < (1 + v/d)P, and hence the desired
conclusion follows from (3.30) on noting that ¢t + uv/d > 14 /d > 2.

This completes the proof of the lemma.

We now aim to exploit the differing sizes of the H; via the previous lemma. We
shall consider the number of solutions, N;(P; ), of the equation

j
> hi(mF —n*) =0, (3.31)
=1

with h,m and n satisfying (3.4) and (3.5). First, however, we shall consider the
number of solutions, N7 (P;¢), of the equation (3.31) subject to the additional
condition m; # n; (1 <i < j).

We suppose in the following four lemmata that j > 1 and ¢1 > ¢ > --- > ¢5,
as is the case in our applications.
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Lemma 3.6. We have

M;
H; 1H;

J
N;(P;¢) < PPH;M; |1+ )
1=3

j—1i even

Proof. We proceed by induction on j. When j = 1 the estimate is trivial, and when
7 = 2 the estimate follows almost trivially by use of divisor function estimates.
Further, we have that Nj(P;¢) is the number of solutions of the equation

B~ m) (0t = ) = W — ) 0

with h, m, n satisfying (3.4) and (3.5). Thus, by standard estimates for the divisor
function, we have o
N3 (P; ¢) < P*HyMs3.

Therefore, recalling the condition on ¢, and applying the trivial inequality
|Zl .. Zn| S |21|n + -+ |Zn|n7

we obtain 3 . o .
Ni(P; ¢) < PTHZ® MY < P* <H3M3 + M§) ,

and so the result follows when j = 3.
Suppose now that j > 3. By applying Lemma 3.5, we deduce that the number
of solutions of (3.31) counted by N (P;¢) with

j—2
> himF —ni*) #£0 (3.32)
=1
is -
<« P*H,;_oM? = P*H; M, My (3.33)
J— 7 7" Hj—lHj . :

Meanwhile, by the inductive hypothesis, the number of solutions of (3.31) counted
by N7 (P;¢) with the left hand side of (3.32) zero is

Jj—=2 >
< PEHjMJZHj_QMj_Q 1+

< P°H;M; | 1+ (3.34)

—~ H; 1H;
j—1% even

The proof of the lemma is now completed on combining (3.33) and (3.34).
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Lemma 3.7. We have

N;(P; ¢) < P°H; M, <1+Z MH>
i—3 z 1

Proof. Lett > 0and i, (1 <wu <t)beintegers with 1 < iy <is < --- <i; < j. Now
consider the number of solutions of (3.31) counted by N;(P;¢) in which m; # n;
whenever i = i, (1 < u < t), and m; = n; otherwise. On noting that when
t = 0 there are only diagonal solutions, we deduce from Lemma 3.6, by a change of
variables, that the number of such solutions is

H; H

Ty—1

t u
-~ [ M; R
< PH;M; (1 +5 #) .

The lemma now follows on observing that M; /H; < M;, ,+1/H;i, _,+1-
There are a number of improvements which are of use in special circumstances.

Lemma 3.8. We have
N;(P; ¢) < P° (HijNj—l(P; @) + ﬁj—le_1> :

and i particular

. M,
Na(P: PEH Ms | 1 .
3(P o) < 3 3( +H3M3>

Proof. The number of solutions of (3.31) counted by N;(P;¢) with m; = n; is
< H;M;RN;_1(P;¢). Meanwhile, by using standard estimates for the divisor
function, the number of solutions with mj; # n; is < P*H; 1 M7,

The bound for N3(P;¢) given by Lemma 3.8 is superior to that of Lemma 3.7
whenever Hy < M3.

Lemma 3.9. When j > 2 we have
N;(P; @) < P* (Hy oy HyM; 1 My Ny o(P; ) + Hy o M2 o(H; M + M2 M3))

and in particular

. M, M,
N4 (P: P H/ M, |1 }
1(P; @) < 4 4< +H3M3+H3H4>

Proof. The number of solutions of (3.31) counted by N,(P;¢) with

h? L(m2k — n?lil) + h?(m?k —n?M =0 (3.35)

J J
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is
< PEHj_lHij_leNj_Q(P; ¢)
Meanwhile, if the left hand side of (3.35) is non-zero, we may either apply standard

divisor function estimates, or Lemma 3.5. Thus, the number of solutions in this
case with m; #n; (i=j—1lori=j)is

K P°H; M7 o(H;Mj+ H;_1M;_y + M;_ | M?).

This completes the proof of the lemma.

We now collect together the conclusions of this section in a simplified form, this
being of use in our later applications.

. . k—i
Theorem 3.10. Suppose that 1 < j < k—2. Letl = [j/2], J = [TJ}, and

Op = /\9"’“) —r (r > 1). Suppose that §, is increasing with v, and let e be 0 or 1
according as j is even or odd.

(Ia) Unconditionally, if j =1, or

(Ib) if k—j is odd, or k—j =2 or 4, and any one of the following conditions hold,
(1)1 <j<J+1;
(i))2+e<j<2J4+2—eand (k+6jye)p1 < 1;
(#i) when j > 3, we have

I
Y di+k(dra+ér)<2 B<I<));
i=1

then )
/0 |Fj(c)2da < P+ NI, (a)

If none of (i)-(iii) hold, we have
1 ~ ~
/O IF(0)|2da < PRI 0, (v)
where 0 = 0;/j. Furthermore, if (k + doq4p) — 20145)p1 < 1 (f = 0,e), we may

take o = (5[ + 6l+e)/j-

(II) In any case, we have

1
/ |Fj(a)?doc < P M7 H;. (c)
0

Proof. Part (Ia) follows from Lemma 2.1 of Vaughan [9], and Part (II) follows from
Lemma 3.2, on considering the underlying diophantine equation. So suppose that
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k —jisodd, or k —j = 2 or 4. Then estimate (a) will follow from Lemma 3.3, on
considering the underlying diophantine equation, providing we can show that

K;(P;¢) < PH;M,. (3.36)

The number of solutions of the system of equations

S

Y @™ -y =0 (1<n<t)

i=1
with 1 < z;,y; < P (1 < i < s)is O(P®) when 1 < s < t. This follows by an

elimination argument, for example. Also, when s =t 4+ 1, the number of solutions
is O(P**1%¢) by Theorem 1 of Wooley [14]. Then when (i) holds, we plainly have

S;(M;R, R; J, k) < (M;R)*2,

and hence (3.36) follows, by Lemma 3.4.
Now suppose that condition (ii) holds. Then we have [+ e < J + 1, so as above,

S.(M;R,R; J, k) < (M;R)"**

when r = [,l + e. Now, by discarding all but one of the implicit equations, we
deduce that for each u,

Su(M;R, R; J, k) < S@M) (MR, R) < (MR +e. (3.37)

Hence, by the definition of H;, the condition on ¢, and the (implicit) assumption
¢1 > ¢; (i > 1), we have

H; 'Sy (MR, R; J, k) < P°M?"

when r = [,l + e. Then, in Lemma 3.4, we have L;‘,Z(P) < PEMZ-j, and once again
(3.36) follows.
Now suppose that condition (iii) holds. Then by Lemma 3.7, we have

N;(P; ¢) < P*H;Mj,

whence, by discarding all but one of the subsistent equations, (3.36) follows once
again.

Finally, if none of (i)-(iii) hold, we use (3.37) in Lemma 3.4 with u =1+ f,j+ f
(f = 0,e) to obtain estimate (b).

This completes the proof of the theorem.
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Theorem 3.11. Suppose that 1 < 57 < k—3, and let J = [%] Otherwise
make the same hypotheses, and adopt the same notation, as in Theorem 3.10.

(I) Suppose that 3 < k —j <5 or, when j =1 and k > 9, that k is odd. Then if
j =1, or any one of conditions (i)-(iii) of Theorem 3.10 hold, then

1
/0 |Fj(a)|*doe < PP MPH?. (a)
If none of the conditions (i)-(iii) of Theorem 3.10 hold, then
1
eAr3+o 13
/0 |Fj(o)[*doe < P*HE M HS, (b)
(II) In any case, we have

1
/0 IFj(0)|*da < PPN, (0)

Proof. When j = 1, part (I) follows from equations (2.14) and (2.15) of Vaughan
[9]. Next, note that by Lemma 3.2,

R§~21(P5 1.+, 05,0) < PPEH; M?,

and hence part (II) follows from Lemmata 3.1 and 3.2. So suppose that 3 < k—j <
5. When one of conditions (i)-(iii) hold, estimate (a) will follow from Lemmata
3.1 and 3.3, on considering the underlying diophantine equation, providing we can
show that

Kj(P; Q’)) < PEI:]J'M]' and Kj+1(P; QZ’),O) < P1+€FI]'MJ'.

The first estimate follows as in the proof of Theorem 3.10. Also, on considering the
implicit diophantine equations, we have

Kj+1(P;¢,0) < PK}(P; ¢),

where K (P; @) denotes the number of solutions of the system of equations (3.8),
subject to our revised definition of J. Hence the same analysis as in the proof of
Theorem 3.10 gives the desired conclusion.

Finally, if none of (i)-(iii) hold, we use (3.37), as in Theorem 3.10, in the above
analysis to obtain estimate (b).

This completes the proof of the theorem.



22 R. C. VAUGHAN AND T. D. WOOLEY

4. MAJOR AND MINOR ARC ESTIMATES

We must now obtain estimates of use in a Hardy-Littlewood dissection. Broadly
speaking, we follow the pattern established by §3 of Vaughan [8]. As a consequence
of the more efficient differencing procedure of Wooley [13], however, we have more
variables to average over. We use an argument based on the large sieve to make some
savings on these extra variables. Also, we develop particularly precise estimates for
certain exponential sums, these enabling us to obtain an essentially best possible
result for a (k — j + 1)th power mean value estimate for F; over the major arcs.

Throughout this section, we shall suppose that 1 < 7 < k —2. When C is a
non-zero integer, and B = B(hj1,...,ht—2) is a subinterval of [0, P;], we define

Dj(o; P,¢; B,C)

h1§2j_1H1 hJSHJ hj+1§Pj h/k_QSPj
where we write £ = 2z + hjiq1 + - - + hy—2. We then define

Dj(o; P,¢) = sup supDj(a; P, ¢p; B,C). (4.1)
C<e-1 B

2

Z e(COéhl . hk_2§2)

z€B

Y

Lemma 4.1. Suppose that (a,q) =1 and |a —a/q| < ¢~2. Then

k
Q;
¢+ QFlag — af

Dj(e; P, @) < P ( + P_lQﬁf +q+ Q;‘?\aq — a|) )

Proof. This is only a slight elaboration on the proof of Lemma 3.1 of Vaughan [8].

We shall suppose throughout Lemmata 4.2 to 4.6 that J, H, M are positive real
numbers with J <« P¥, M <« PY* and H « PM~". As a notational convenience,
we shall also write Q¥ for JH3M?*. When C is a subset of Z N (M, M R], we define

2r
E.(a;J,H,M;C) = Z Z Z e(ajh®m?*)

j<J h<H |mec

Lemma 4.2. Suppose that M* < X < Q¥M~%, and that (a,q) =1, ¢ < X and
lqae — a] < X L. Then uniformly in C, we have
JH M?

(q+ QFlag — af)!/*

Proof. We may apply the argument of the proof of Lemma 3.2 of Vaughan [8] to
show that the sum in question is

< E+ P° (JHM + H*M?¥),

(4.2)

Ey(o; J,H,M;C) < P? ( + JHM + P2H> .

where

2
E < P¢ <JHM+ JHM )

(¢ + Q*lag — af)/*
This completes the proof of the lemma.
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Corollary 4.2.1. Suppose that k —j >4, Mf < X < Q?Ml_k, (a,q9) =1,¢< X
and |ga — a] < X1, Then uniformly in C, we have

sup Ei(a; C’Pk*j*QHl_llej, Hy, My;C)
C<e—1

< PFITHE MY ((q +Q¥ag —al)"HF + M1_1>

Proof. We merely note that when k& — j > 4, we have Pk_j_Qﬁj > P2H;.

When k — j < 3 the following lemma usually provides a bound superior to that
of Lemma 4.2.

Lemma 4.3. Suppose that
Y < min{M, JH3, Q4 (QFM'—*k)1/6} (4.3)

that Y* < X < QY% and that (a,q) =1, ¢ < X, and |ga —a| < X~ L. Then
uniformly in C, we have

JHM?
(q+ Q*lag — a)'/*

Ei(o; J, H,M;C) < P* ( + JHM2y—1> :

Proof. The exponential sum in question is at most

> > min{J | a(m3* —mi*)n® |71},

M<mi,ms<MR h<H

Since Y < M, the contribution from terms with mq, = msy, combined with that
from any terms with

la(m3® —mi*)h? |71 < 4y,

is < PEHJM?Y ~!. Thus we need only consider

ST S I+ T | amB - mERd ) (4.4)

m1,ma h<H
where the first summation is over m; and msy satisfying

M <my <my<MR and | a(m3* —m2*)n3 ||< (4J)" Y. (4.5)
For given my, mso, h, we may choose n so that

Fa(m3® —mi*)h? ||= la(m3* —mi*)h® —n.
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Let R = (4JH3Y ~1)'/2. Then for given m,,msy, by Dirichlet’s theorem we may
choose b, r with

(byry=1, r<R and |a(mi" —mi*) —b/r| < (rR)" .

Notice that if b = 0 then » = 1. Hence, for any mi, ms, h included in the above
sum we have

YH3 1/2
e

|bh® — nr| = |b/r — n/R3|rh® < 2 (

since by assumption, Y < JH 3. Thus bh® = nr, and if n = 0 then b = 0 and

r = 1. Hence in all cases r|h3. Put r = r1r3r3 where r3 is maximal and (ry,r2) = 1.

Then ryrors|h. Let hg = h/(r1rers). Then the sum over h in (4.4) is

< ¥ 4
3 3 2k _ 2k) _
hOSH/(TlTQTB) 1 + JhO(T’17’27”3) ’a(m2 ml ) b/r|

JH(T‘lT‘QTg)_l
(1 + JH3|a(m3k — m32*) — b/r|)1/3
JHr=1/3

<

S Ut TH a(mZE — m%) — b/ /3
Thus
Ei(a) < PF(A+JHM?*Y 1),
where TH
A=
Z (r + JH3|a(m3* — m2k)r — p|)1/3’

miy,ma

and the summation is over m; and ms satisfying (4.5). Plainly, we may also restrict
the summation to be with

r+ JH3|a(m3 — m2¥)r — b < R7FY3, (4.6)

We put
j:(m17m2)7 n:ml/ja l:(mQ_ml)/.ja

so that
J<MR, [<MR/j, M/j<n<n+l<MR/j, (nn+l)=1

Now, of course, b and r will depend on 5,1,n. Let S = (MR/j)?*~1H?3.J)'/2. Then
given j and [, by Dirichlet’s theorem we may choose ¢, s with

(c,s) =1, s<8 and |aj®l—c/s| < (sS)7L.
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Again we observe that if ¢ = 0, then s = 1. Let D = ((n +1)?* — n?¥) /. Then

ok n+l
D = 7/ L dg,

and so

M 21 MR\ 21
#(2) spem(E)
J J

Thus condition (4.6) implies that r < R7*Y?3, and

aj?kl — b < Y—3
rD| ~ rDH3JRk
Therefore
lerD — bs| = ’E _ b srD
s rD
Y3D Y3S

<
— SRF + H3JRF
< 4kR—kzy3(H3J)—1/2(MR/j)k—l/Q
<1,
since by assumption, Y¢ < Q¥M'~** = H3JM'=2¥. Thus crD = bs. Hence r|s.

Let s; = s/r. Then ¢D = s1b. Hence c|b and s1|D. Therefore, as (n,n+1) =1, we
have (n(n+1),s1) = 1 and we may conclude that

HJ(s1/s)'/3
S VEPIED D) B [ Eirye e M

JSMRI<KMR/j s1]ls n

where the final summation is over n satisfying
n<MR/j, (n(n+1),s1)=1 and s|D. (4.8)

By a simple argument, as in the proof of Lemma 3.2 of Vaughan [8] (see pages
22,23), there are O((s11)?) choices of n (mod s;) satisfying (4.8). Thus the inner-
most sum in (4.7) is

< <MR P(s1/s) /3 HJ

1 . 4.
jSs1 + >(1+H3J(M/j)2k1|o¢j2kl—c/s])1/3 (4.9)

The contribution to A from terms in (4.7) with M R < js; is therefore < P MHJ.
Thus, from (4.7) and (4.9), we have

A< PS(B+JHM?*Y ™),
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where

HJMj™!
Z Z (s + H3J(M/j)* {|a 2k — c[)1/3" (4.10)
J<MR I<MR/j J J

Plainly, we may restrict the second summation in (4.10) to those [ satisfying
s+ H3J(M/§)* Yaj?*is — | < R72(Y/5)3.

Let T = (M/4)*(H3J)'/2. Then given j, by Dirichlet’s theorem we may choose
d and t with
(d,t)=1, t<T and |oj?* —d/t|<(@tT)?

Once again, if d = 0 then ¢ = 1. Then for 5 and [ included in the summation in
(4.10), we have

—1 -\ 3
'lﬁ_ﬂl’”< 28 (Y/J)"

T (H3)VA(M )Gk
since, by assumption, Y¢ < Q¥M*=** < H3J. Thus ct = dsl, and so s|t. Let
t1 =t/s. Then ct; = dl. Thus t1|l. Let I =1/t;. Then ¢ = dl;. Therefore

HIMj™!
B< Y Y (t/t) Y . T — o
J<MR 1t L <atmy e, LT HPT (M52t ag?s —d/t)Y

By Lemma 7.1 of Vaughan and Wooley [10], the innermost sum is

< HJMQR]_Qt
(1+ H3J(M/§)**|aj?r — d/t])1/3
Thus
B < P*(C+JHM?*Y 1)
where 5o
HJM?5~
= Z 3 -21<;j 2k 1/3°
2o (o BRI (M) | — d)

and we may restrict the summation to those j satisfying
t+ H3J(M/5)* |t —d| < 3(Y/5)>. (4.11)
Let U = Q*/2. Then by Dirichlet’s theorem we may choose e, u with
(e,u)=1, w<U and |oau—el <UL

On noting that ¢ is non-zero, we find that for any j satisfying (4.11), we have 7 < Y.
Then when j satisfies (4.11), we have

e__a 2k <1(V/) JikjLL
u  jt|’ P\T T HR (M)
Y2k YZkU

<
—2U * 2H3JM?2Fk

<1

Y



FURTHER IMPROVEMENTS IN WARING’S PROBLEM. 27

since by assumption, Y2¥ < Q*/2. Thus ej?t = du Hence tlu. Let ug = u/t.
Then ej%* = duy. Hence o 52k, Let ug = uLu3 .. u% where ug, is maximal and

Uy, ..., Uugk_1 are squarefree and coprime in pairs. Then u; ... usg|j, whence

HJM? . —24-1/3
O < Z Z (wU1U2 U2k) 7
(1+ H3JM?*|ov — e/u\)1/3

w UL, UK
where the second summation is over ¢, uy, . . ., ugy satisfying tuju3 . . u%’k‘: = u. Thus
PEHJM?
(u+ QF|lau — e|)1/k’

When u+ Q*|au —e| > %Yk we are done, so we may suppose that u+QF|au —e| <
%Yk. Thus

(O

< YkX Y* <1
U
1< 50r Tox =&
since by assumption, Y* < X < QkY_’“. Hence eq = au, so that u = ¢, e = a, and
the bound for Fj(«) follows at once.
This completes the proof of the lemma.

€ Cl

In the next two lemmata we prepare a large sieve argument which yields a
further useful bound on E(«). In Lemmata 4.4 to 4.6, the variable N denotes a
large positive integer with M?¥ < N < P*. Then in particular, JHN > Q.

Lemma 4.4. Let ¢(n) (n € N) be arbitrary complez numbers, and define

é i e(Bjn)

Suppose that (a,q) =1 and |8 —a/q| < ¢~ 2. Then

2

JN
q+ JN|Bq — al

N
+J+N+q+JN|ﬁq—a|)Z|c(n)2

n=1

S(B) <« P*° (

Proof. On squaring out, interchanging the order of summation, and performing the
summation over j, we find that

N
By <Y lemPP+ Y letn)e(ng)| min{J,[|B(nz —n)| 71} (4.12)

1<ni1<n2 <N

Thus it suffices to treat the second term on the right hand side of (4.12), which by
the arithmetic-geometric mean inequality is

< Y (lem)lP +le(ne)P) mindJ, | B(ng —na)l| 71}

1<ni<na <N

N N
<Y le(n)? Y min{J, [|8h] "}
n=1 h=1
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When ¢ > NJ the lemma follows trivially by Cauchy’s inequality. Then we may
suppose that ¢ < NJ, and so by Lemma 2.2 of Vaughan [5] we have

N
S(B) < PE(NJqg '+ J+N+q) ) |e(n)*. (4.13)

If NJ|Bq — a|] < g then we are done. We therefore suppose that NJ|Gq — a| > ¢,
and that a and ¢ satisfy the hypotheses of the lemma.
By Dirichlet’s theorem we may choose b and r with

(b,r) =1, r<2|8g—a|”' and |Br—0b| < 3|6q—al.
It follows that b/r # a/q and |Br — b| < (2¢)~*. Thus
(qr)™" <18 —a/ql+ 18 —b/r| <|6—a/ql+ (2qr)7",

whence (2|8q — a|)~! < r. Therefore, by (4.13) with g replaced by r, we have

N
S(B) < PT(NJr '+ T+ N+7) ) e(n)
n=1

WE
=
s

< P (JN|Bg—a|l+J+N+|8qg—a|™")

n=1

and the desired conclusion follows.

Lemma 4.5. Let ¢(n) (n € N) be arbitrary complex numbers, and define

N 2

Z Ye(ah®jn)

=22

j<J h<H

Suppose that
Y < min{N, J, (JNH3)Y/2},

that Y3 < X < Q*Y 3, and that (a,q) =1, ¢ < X and |qa — a| < X~ '. Then

N
JHN

Ta<<P€( +JHNY1)§ c(n)]?
(cv) (q+Qk|aq—a|)1/3 n:1| (n)

Proof. Let S = NJY . Then given h, by Dirichlet’s theorem we may choose c
and s with
(c,s5)=1, s<S and |ah®s—¢| <SS (4.14)
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Thus, by Lemma 4.4 we have
JN il
T P J+N JN|ah?s — 2,
(@) < P* ) (s TN ags g T TN+ s+ INlah’s c|) |e(n)]
h<H
But by (4.14), we have
s+ JN|ah?’s —c| <Y + NJY 1

so in view of the hypotheses on the size of Y, we have

n=1

N
JN
T pe HJNY ! 2,
(a) < ’;{ P P P ;|C(n)]

Thus it remains to estimate

Z(s+JN|ah3s—c|)_1, (4.15)
h<H

where, plainly, we may restrict the summation to those h with
s+ JN|ah®s — | < 3Y. (4.16).
Let T = (H3JN)'/2. Then by Dirichlet’s theorem we may choose d and ¢ with
(d,t)=1, t<T and |a—d/t|<(tT)" .
Then for each h satisfying (4.16), we have

HY TY H3\ /2
dhds —ct| = |& = £ S ooy (2
[dh”s — ctl ‘t h3s 2T TN = (JN)

since by assumption, Y2 < JNH 3. Thus dh®s = ct, and so s|t. Let to = t/s.
Then dh® = ctg. Therefore, to|h3, so by puting to = tlt%tg with ¢3 maximal and
t1,ts squarefree, we have tytots|h. Hence the sum (4.15) is

(to/t)

MDY (/).

to|t F<H/(t1tats) 1+ JN (jtitats)3|a — d/t|

(to/t)H

(t1tats) (1 + JNH3|a — d/t’)l/?’

Hte
< 1/3°

(t + QF|lat — d|)

If t+- Q% |at —d| > %Y?’, then we are done. Thus we may suppose that t+Q¥|at—d| <
3Y3. Therefore

d c <1

— Y

th3s <

<
tolt

Y3 Y3X
N
29X " 20F =
since by assumption, Y3 < X < Q*Y 3. Hence at = dq, so that ¢ =t and a = d,
and the bound for T'(«) follows at once.
This completes the proof of the lemma.
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Lemma 4.6. Suppose that
Y < min{M?* J, (JM** 312 (4.17)

that Y3 < X < QY =3, and that (a,q) =1, ¢ < X, and |ga —a| < X', Then
uniformly in C satisfying C C A(MR, R) N (M, M R], we have

E.(c; J, H, M;C) < P JHM"+?* (Y + (¢+ Q*lag —al)” 1/3)

Proof. For n € N, define ¢(n) to be the number of solutions of the diophantine
equation
B =,

with z; € C (1 < i < 5). Also, let N = (MR)*. Then by (4.2), it follows that
Es(a; J,H, M;C) is an exponential sum of the form 7'(«) of Lemma 4.5. The lemma
then follows on noting that M?* <« N <« P* and

N
> le(n)? < SEH (MR, R) < PEM".

We now attend to the matter of obtaining suitable major arc estimates for the
exponential sums Fj(a).

Lemma 4.7. Suppose that (a,q) =1, 8 = o — a/q, and qP_lQ;?Rk(k_j”m <1.

Then )
ZZ Pq"7i(q,a,h,m) i +ijquk;z;l+E,
(1+|Blh1 ... hjPk—I)F=5

where the summation is over h and m satisfying (2.1), and

ie (gqu(r, h, m)) | . (4.18)

r=1

7;(¢,a,h,m) =

Proof. The proof we give is a simple modification of the proof of Lemma 3.5 of
Vaughan [8]. We have
= ZZS(a;h; m), (4.19)
h m

where

S(a;h;m) = Z e(a¥;(z;h;m)).

1<2< P,
Hence, on writing o = a/q + (3, a standard argument gives

S(a;h,m)=g¢"' > o(g,a,b,h,m)T(3,b,h,m), (4.20)

—39<b<3q
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where .
o(q,a,b,h,m) = Z e (E\I/](r, h,m) + ér)
— q q
and ;
T(6,b,h,m) = e (ﬁ\Ifj(z, h,m) — —z> .
1<z<P; q

Each coefficient of W, is divisible by hy...h;, and so if d is the greatest common
divisor of the coefficients of a¥;(r,h,m) + br and ¢, then d < (¢, h1...h;,b).
Therefore by Theorem 7.1 of Vaughan [5], we have

o(q,a,b,h,m) < q 77 (g, hy ... hy,b)FT. (4.21)
Let b
¢(v) = BY;(y,h,m) — pal (4.22)
Then
b = Bma...my)
g OV T ey
where

yHhimy  prthamy bimathgmy
I:/ / / v T iy
N

—hlm’f wl—hgmé“ ’l[)j,l—hjm?

Thus, when |y| < 2/ P, we have

b ' K j k kyk—j—1
‘6 +¢/(7)' < 2]m|5|h1...h]~(2]}7+h1m1 oo hymb)R
< 1
4q°

When —1¢ < b < 1g and |y| < 27P, we therefore have |¢/(v)| < 2. Further, when
b # 0 we have

/ 0]
6" ()] > 2%

Therefore, by Lemma 4.2 of Vaughan [5], we have

1
T(8,b,h,m) = Y I(8,b,h,m,u)+O(1),

u=-—1
where

I(B,b,h,m,u) = /0 e(o(y) — yu)dny. (4.23)
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By integrating by parts we deduce that
I(ﬁa b7 h7 m, il) < 15

and further, when b # 0,
I(8,b,h,m,0) < |%|

Therefore
T(3,0,h,m) = I(5,0,h,m,0) + O(1),

and, when b # 0,

T(8,b,h,m) < ‘%'
Hence, by (4.20) and (4.21), we have
—1 1 E—g-ti, 1
S(a7 h? m) - q U(Q? a" 07 h’ m)I</87 07 h? m7 O) << Z b q k=3 8(Q7 b) k=3

1<b<igq
k—j—1
B

The lemma now follows from (4.19) on observing that by (4.22), (4.23) and Theorem
7.3 of Vaughan [5], we have

1(8,0,h,m,0) < P(1+ |Blhy ... h; P*9) "7

In the following lemma we provide an estimate for an exponential sum which we
will use ultimately to estimate 7;(g, a,h,m) when j < k — 3.

Lemma 4.8. Suppose thatn > 2. Whenq € N anday,...,a, € Z, define f(x;a) =

S ajad and
Staa = e (159

r=1 q
Let d = (q,a1,...,a,) and r = q/d. Definer; (1 <j<n) by

rj:Hpj (1<j<mn), and r,= H p'.

pllr pr, izn

Then

S(g,a) < qadri/2 r;_l/j.

Jj=2

Proof. Let r = ¢q/d, and b; = a;/d (1 < j < n). Then S(g,a) = dS(r,b), with
(r,b1,...,b,) = 1. In view of the multiplicative property of S(q,b) (see the proof
of Theorem 7.1 of Vaughan [5]), it suffices to treat the case in which r is a prime
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power, say p'. Suppose that (p,c1,...,¢,) = 1. Then by Corollary 2F of Chapter
IT of Schmidt [3], we have

S(p,c) < p'/?,
and by Theorem 7.1 of Vaughan [5], for each ¢t > n we have

S(pt,c) < pt=t/m,

Thus we may assume that 2 <t <n — 1.
By making the transformation z —— u +vp'~! with 1 <u <p'~!, 1 <wv < p,

we have
(152252

u=1 v=1
c)
)

:i’;pe(f(u

where the final summation includes only those u with p|f’(u;c). But since

(p,c1,2¢2,...,nc,) < n(p,cr,...,cn) =n,

the congruence f’(u;c) =0 (mod p) has at most n(n — 1) solutions (mod p), say
&1,...,&n. Thus

and this completes the proof of the lemma.

We are now able to establish a suitable estimate for a moment of Fj(«) of use
on the major arcs.

Definition 4.9.
(1) Let m; denote the set of points in [0, 1] with the property that whenever there
are a € Z and q € N with (a,q) =1, and

gPTIQFRM | —a/q < 1, (4.24)

then ¢ > P. Further, let M; = [0,1] \ m;.

(i) When (a,q) = 1, let M;(q, a) be the set of o in [0, 1] for which (4.24) holds.
(Note that the M ;(q,a) with 0 < a < q < P are disjoint.)

(iii) Define F; () to be the function of a taking the value zero whenever o € my,

and by
ZZ Pq~ 17'] (¢,a,h, m)
(1+1|8lhy ... hj P+ J)k 7

whenever o € M;(q,a) and 0 < a < q < P. Here 7; is defined as in (4.18), and we
have written 3 for a — a/q.
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Lemma 4.10. Suppose that 1 < j<k—3 andt>k—j5+ 1. Then
' k

* t T AT\t —
/0 IF7(0)|tda < P*(PH;NE)IQ7".

Proof. The integral to be estimated is

t

Il N D0 D e

. 1 .

g<P a)l M;(q,a) (14 |a—a/qlhy...hjPk=i)F=
(a,q)=1

Let h = hy ... h;, and for a typical ¢ from the summation, put r = ¢/(¢q, h). Write

r= Hf 1] r;, where the r; (1 < i < k— j) are defined as in the statement of Lemma
4.8. On recalling the definition of ¥, and applying Lemma 4.8 to (4.18), we obtain

kj
7:(¢,a,h,m) < ¢°(q, h)r)’? H ri V1
i=2
Hence
Pq 17 h ~ -
> ¢ nleebm) PN (g, ), (4.25)
m n (1+|a—a/qlhy ... hjPF=3)%=3
where

—1/2 kaj po1/i

r .
J(q,H) — 1 1=2 A - .
thH (1+ |a—a/q|hPk=3)%

Here, of course, the r; depend implicitly on both ¢ and h. We may classify the
values of h in the last summation according to the size of d = (¢,h) . Thus we
deduce that

<< Z —-1/2 H —1/z Hd™1 —, (426)

dr=gq (1+ |o—a/qlHP*7)%=

where r = Hf:_f ri, as in the statement of Lemma 4.8. Therefore, by (4.25), (4.26)
and Holder’s inequality, we obtain

3 Z / FF(a)|'da < PF (Pﬁ[ M) Jo(q), (4.27)
a<P o=l M;(q:a)

where
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and
t

k—j
= Yo X (e # T
g<P dr=q 1=2

We have
J < Q" (4.28)

Also, on noting that

k—j ‘
o(q) < Z di-t Z r <T1—1/2 H Ti—1/1>

d<p r<pP i=2

t

k—j 0o ‘
< lr+p2+ 3wt Y e,
=2

p<P i=k—j+1
we deduce that for some fixed k, we have

o(q) < H (1+rp™ ") < P°. (4.29)
p<P

The lemma now follows on combining (4.27), (4.28) and (4.29).

5. THE ITERATIVE SCHEME FOR FIFTH POWERS, I

The iterative scheme for s > 6 is rather more complicated than that for s < 6.
We defer the treatment of the former cases to §6. For s = 1 and 2 we have the
classical bounds

Ss(P,R) < P**t¢,
and for s = 3 and 4 we use the results of Theorem 1.4 of Vaughan [9]. These give

4+ 26
MN=3420 and M — 20
1—-6
where 6 is the smallest non-negative root of the polynomial 3 — 420 — 2702 — 4263.
Thus we obtain A3 < 3.136258 and A} < 4.438657. We display below the iterative

procedures we adopt for s =5 and 6.

s =0>.
F5fy — RAff — Bff = (Fg)M/A(f§)3/

10
1

BRI RA — RBfy = G

|

12
1
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In what follows, we let (A4) be an iterate of the sequence converging to (\¥), and
we write 6 for ¢; and ¢ for ¢ . Note that to obtain a reasonable initial iterate
(As), we may use the values given by Lemma 3.2 of Wooley [13].

(i) s = 5.
By Theorem 3.11(I) case (i), we have

1
/O |Fy(a)|*da < PP H3MS. (5.1)

Then proceeding as described in §2, using the iterative sequence for s = 5 given
above, the equations for A5, 0, and ¢ are determined by

x 1/4 *\3/4
PH, M, MyQ)* ~ (P2(HyHy My My)®) ' (@37)%* (5.2)
PMyQY ~ (P(MyHy)2MEQY Q) '/, (5.3)
P ~ PM3Q). (5.4)
On writing
5= 2N - X, (5.5)

equation (5.2) leads to the equation

S(1—60—¢)+6—4¢ =0,

and hence . 6451 0) 56
4446 '
Meanwhile, equation (5.3) leads to the equation
204+604+X(1=0)=X5(1—0) + A3(1 — 0 — ¢) + 3 — 80 + 6¢.
On writing &€ = A5 — 2} + A3, we obtain
E(1—-0)+1—100 = (A5 —6)o. (5.7)
Write . A =6 .
446 '
Then (5.6) and (5.7) yield
1+&—ad

T 10+E+a(l-0)
By (5.4), the next iterate for A5 is therefore given by

A= \i(1—6) + 1+ 86.
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The above iteration process converges to A, with

AL = Ni(1— 05) + 1+ 865,

37

(5.9)

where 05 is a root of the equation given by substituting the expression (5.9) into

(I0+ & +a(l—0))05 =1+E&" — ad,
with £ = A\ — 2] + A\5. We find that
E*=X3+1+805 — \;(1+65),
and so

(8= ADNO2+ B+ XN+ a(l1—68)05 — (2+ X5 — X\ —ad) =0,

(5.10)

with 6 and « given by (5.5) and (5.8) respectively. It transpires that 05 is the

positive root of equation (5.10), whence A < 5.925080.
(ii) s = 6.

We observe that the estimate (5.1) holds once again. Then proceeding as described
in §2, using the iterative sequence for s = 6 given above, the equations for Ag, 6,

and ¢ are determined by

PHMMQ) ~ (PA(H M L)) (Q3F) 7 (@)
. . 1/2
PMQY ~ (POMLHPMEQ) Q)
A*

P ~ PM{°Q7>.

On writing ¢’ = %A; + %)\6 — A}, equation (5.11) leads to the equation
F(1—0—¢)+0—4¢p =0,
and hence
b= 6+46(1—0)
4+

Meanwhile, equation (5.12) leads to the equation

21+ 0+ A\(1—0)) = Xg(1—0) + N;(1— 0 — @) + 3 — 80+ 86.

On writing £ = A\¢ — 2\ + A}, we obtain

E'(1—0)+1—100 = (\; — 8)¢.

(5.11)

(5.12)

(5.13)

(5.14)

(5.15)
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Write g
;M
T ur
Then (5.14) and (5.15) yield
1+& —d'é

T 0+E +a/(1-5)
By (5.13), the next iterate for Ag is therefore given by
Ag = Ai(1—0)+ 1+ 100.
The above iteration process converges to Ag, with
Ag = Ai(1—6g) + 1 4 1066, (5.16)
where 6g is a root of the equation
(I0+E& +a™(1—0")0g =1+ E" —a™d”,

in which

AL — 8

0" = _ 4 °
4 4+ 5’

AL LA SN £ =M 20X 4L o

D=
=

and in 6%, £* and o* we substitute for \§ from (5.16).
The root of the resulting cubic polynomial can be found directly. Alternatively,

one may continue the iteration process to obtain a good approximation to the root.
Thus, by (5.16) we obtain A§ < 7.541755.

6. THE ITERATIVE SCHEME FOR FIFTH POWERS, 11

We display below the iterative procedures we adopt for s =7 and 8.

s=T.
F3fo? — Fifi? — Ffi? = (F2)(3?)
L
1
s = 8.

Fife' — it — Bfi? = ()%

16
1

The iterative procedures for Ay and Ag must be taken together. Before we go on to
explain the iterative procedures themselves, we shall require a lemma.
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Lemma 6.1. Lett be an integer with t > 3. Suppose that ¢ > %5, ¢ <51 — 3

U < min{M,, PH,H;® QY*, Q5/° M, /%Y, (6.1)

and

Z = pUul-/t (pl/BMft—lo‘“t) v (6.2)
Then
12 14e V7. 7 1/4)6 TAs—
/ |Fo(a) fa(a) “|da < PP My Ho (Z Qy° + Q3 ) :
0

Proof. On using standard Weyl differencing, we have

]Fg(oz)|2 < P(Mgﬁlg)Q + Mgﬁ2|G(a)|, (6.3)
where
=> > J(a)
h h<P,
and o
=3 Y e (-%(22 4 h:2h, him, 1)) .
32
m 0<z<Py—

Here the summations are over m and h satisfying (2.1). But by (3.1),
|J(a)| = K(a;h,h)Li(a;hyh)La(a; hy h),
where
K(ashh)=| > e(60ahhihy(2z + h)%)|,
0<z<P>—h
and for 7 =1, 2,
Li(ash, h) = |Y e (80ahhyhahim")|.

my

Write C(M) for A(MR, R) N (M, MR]. Recalling (4.1) and (4.2), we find that by
Holder’s inequality, we have

G(a) < D(a)'/? By(a) % Ey(a)? 7, (6.4)
where
D(e) =Y K(a;h, h)* < Da(a; P, ),
h,h
Ey(a) =) Li(a;h, h)* < P E,(a; 80H Py, 2Hy, My;C(My)),
h,h

EQ(O{) = ZLQ(O[; h, h)2+$ < PE(MQR)ﬁE:[(Oé; 160H1P2,H2,M2;C(M2)).
h,h



40 R. C. VAUGHAN AND T. D. WOOLEY

We now recall Definition 4.9. Suppose that @ € my. By Dirichlet’s theorem
there exist b € Z and r € N with

(byr)y=1, r<P7'Q} and |ar—b| < PQ;°. (6.5)

On noting that our assumptions on ¢ imply that P < P~1Q3, we deduce from
Lemma 4.1 that 5
Q3

r+ Q5lar — bl

D(a) < P* ( + P_1Q3> :
But a € my, so either 7 > P or Q3|ar — b| > PR™'% and hence
D(a) < P°71Q5 < P?*°H,. (6.6)
Next we observe that our hypotheses on ¢ imply that
PyH MO H? > P7Y (MM, Y? > P23 and M0 > PY/3,
Then we may apply Lemma 4.6, with Y = P'/3 and X = P~1Q3, to deduce that
El(oz) < P1+€FI2M{H+10 ((T + QS|QT . b|)_1/3 + P—1/3>
< P34 Mt (6.7)
Finally, since U < Ms, we have U® < P, and hence
U < P7'Q3 <U°Q5.
Then by Lemma 4.3, we have
. 2
Ba(a) <P, M. T <(r + Q3lar — b)YV 4 U—l)
14e £ 24531
<P T HyM, U—. (6.8)
Thus, by (6.3), (6.4), (6.6), (6.7) and (6.8), we have

sup |Fy(a)| < PYEH My Z 74, (6.9)

aEmso

Now suppose that a € 95. By Dirichlet’s theorem there exist a € Z and ¢ € N
with (a,q) = 1 and satisfying (4.24). Then since o ¢ mo, such a and ¢ exist with
0 <a<qg<P. Thus, by Lemma 4.7 we have

Fy(a) < Fj (o) + P3¢ Hy M, (6.10)

where F3 (o) is defined as in Definition 4.9(iii). Our hypotheses on t and ¢ imply
that

ALES (P1+?’1tM2>1/4 < p/3,
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and so by (6.9) and (6.10) we deduce that
1 o N
/ Fy(a) fo(@) 2|da < P Hy M2 /4QY + 1, (6.11)
0

where
I= [ IF5(@)fale)2da.
Mo
But by Holder’s inequality,
< JA g (6.12)

where

1
Ji = / | f2()'®|dr, and Jp = / |E5 () [*der.
0 RYS

We have J; < QQS“, and by Lemma 4.10 we have Jo < P6<Pﬁ2M2)4Q;5. The
lemma now follows by (6.11) and (6.12).

We are now in a position to describe the iterative processes when s = 7 and 8.
As in §5, we let (A\s) be an iterate of the sequence converging to (A\%), and we write
0 for ¢ and ¢ for ¢s.

(i) s=T7.

By Lemma 6.1 we have

1
/ IFy(a) fa(a)2]da < P*(U + U3), (6.13)
0
where
Uy = PNLH,Z7Y4Q), (6.14)
Up = PNLH,Q3 ™1, (6.15)

and we must take t > 3, ¢1 > 1—15, and ¢o < 5 — % Here we take Z to be as large
as is consistent with the conditions of Lemma 6.1. Suitable values of p; may be
obtained by means of Lemma 3.2 of Wooley [13]. Using these values, it transpires
that a good choice for ¢ is 22, and we may take oo = 34.228489.

For the moment, suppose that our ultimate choices for 6 and ¢ imply that U; is
the dominating contribution. Then proceeding as described in §2, using the iterative

sequence for s = 7 given above, the equations for A7, 6, and ¢ are determined by
PH, My MyQ5° ~PMMyHyHy Z7/4Q0° (6.16)
PMQY ~ (P(M1H1) M Q26Q16> , (6.17)

P ~PM2Q)e. (6.18)
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Write A = A\ — 7, and § = 92 — 34. Suppose now that our ultimate choices for 6
and ¢ imply that (6.1) holds when

U =QY M, . (6.19)
The equations (6.2), (6.16) and (6.17) then yield
21(5 — 24¢ — 50) (1 — 350)
4 —20¢ =1
0¢ + 132 + 66
100 =1+ (5 — A)g.

Therefore
5= 289 + 1050 + 666
- 2136 ’
and hence
3581 — 289A

_ . 6.20
20835 + 105A — 60(5 — A) (6:20)

Calculating # and ¢, we find that 6 < 0.163961 and ¢ < 0.143465. A simple
calculation now shows that our choices for U and Z were indeed justified.

We must now check that U; is indeed the dominating contribution. This will
follow from (6.14) and (6.15) provided that

Z—1/4Q;\§ > QQZ (3>\8_5) )

This inequality holds provided that

21(5 —24¢ — 56) 1 — 356

4G — 1-6-— 1
(405 +5 — 3As)( ¢) > 1+ - +

(6.21)

In order to check that the condition (6.21) is satisfied, we shall plainly require a
suitable estimate for A\g. We can, however, make do with a relatively poor estimate,
and to this end we will make use of inequality (k — 2) of §4 of Vaughan [8]. Thus
it suffices to use the iterates
=808 =T+

whence we deduce that A\g < 11.10486. In view of our choices for # and ¢, this is
enough to show that U; is indeed the dominating contribution.

Since the value of € given by (6.20) is independent of A\ with s > 6, we deduce
from (6.18) that

Az =X(1—-6)+1+126.

Thus we obtain A7 < 9.272729.
(ii) s = 8.
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Initially, we may proceed precisely as in case (i), using the estimate (6.13). For
the moment, suppose that our ultimate choices for 6 and ¢ imply that U; is the
dominating contribution. Then proceeding as described in §2, using the iterative
sequence for s = 8 given above, the equations for Ag, # and ¢ are determined by

PH My My Q)® ~P My MyHy Ha Z714Q0° (6.22)
A7 21 7127 s ) 2

PMQY ~ (P(MlHl) ME2Q)S 18) , (6.23)

P ~PMMQY. (6.24)

Write £ = A\g — 2% + A\§. Also, as in case (i), write A = A\§ — 7 and § = p9o — 34.
Suppose that our ultimate choices for § and ¢ imply that (6.1) holds when U satisfies
(6.19). The equations (6.2), (6.22) and (6.23) then yield

21(5 — 24¢ —50) 1 — 380
4209 =1
0 =1+ 132 T 66

100 =1+ &1 —0)+ (5—A)o.

Therefore . 50
289 4+ 1050 + 6
- .2
o) 5136 , (6.25)
and hence P A
1+21 —2
3581 + 2136 89 (6.26)

20835 + 2136€ + 105A — 60(5 — A)’

Given an iterate for \g, we therefore obtain the next iterate as follows. We compute
6 and ¢ from (6.25) and (6.26). We then check that the choice of U given by (6.19)
is indeed permissible, and check that U;j is the dominating contribution. The latter
follows provided that (6.21) holds. The next iterate for \g is then given by (6.18),
that is, by

Ay = A5(1—60) + 1+ 140. (6.27)

To succeed with this iteration process, we need to start with an initial iterate for
Ag reasonably close to A\§. For this purpose we can use inequality (k — 2) of §4 of
Vaughan [8] once again. We therefore take

A computation now shows that Ay < 11.077363. We note that A§ can be calculated
directly as the larger root of the quadratic equation obtained by eliminating 6
between (6.26) and (6.27), equating A\ and Ag and recalling that A\g occurs linearly
in £.

We summarise in the Appendix the converged values of A* as computed to 15
significant figures and rounded up in the last figure displayed.
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7. THE PROOF OF THEOREM 1.1 FOR FIFTH POWERS

We shall prove Theorem 1.1 for fifth powers by using a variant of the Hardy-
Littlewood method. In this section our notational demands are somewhat different.
We suppose that ¢, n and 7 are sufficiently small positive numbers, with n and 7
depending at most on e, and € and 7, respectively. In addition, we suppose that n
is sufficiently large in terms of €, 7, and 7. We adopt the convention that whenever
0 appears in a statement, then the statement holds for some positive number §
independent of n. Write

P=n'? R=P" o=4, and 0= L.
We let My, ..., Mg be real numbers satisfying
P? < M, < P97, (7.1)

and for convenience write
Qs = PM; " and H, = PM°.
Consider the number r(n; M) = r(n; My, ..., Mg) of solutions of the equation
4y’ a4 2+l + -+ plyd =, (7.2)
with the ps primes satisfying
ps=—1 (mod?5), M <ps<2M,, (7.3)

and with
1<z,y<P, z;€c APR) (1<j<T7),
ys € A(Qs, R) (1 <5<8).

We shall show that
Z e Z 7(n; M) > n'2/5, (7.4)
M, Mg

where the multiple sum is over all choices of M of the form
M, =2"P?, (7.5)

and satisfying (7.1). Since ps > R, each solution of (7.2) gives rise to a unique
representation of n as the sum of 17 fifth powers of positive integers in the sense that
the ordered 17-tuple z,y, z1,...,27, p1Y1,- - -, Psys is unique. Hence the verification
of (7.4) is sufficient to establish Theorem 1.1 when k = 5.

We henceforth assume that the M, are of the form (7.5). Let

Fla)= ) e(as®), gia)= >  elaz?),

1<z<P z€A(Qs,R)
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flay=" elaz®), hy(a)=7_ gs(apl),

zeA(P,R)

where the py satisfy (7.3). Then

r(n; M) = /O ' Fu(0) Fala)e(—an)da, (7.6)

where
Fi(e) = F(a)f(a)T, (7.7)
Fala) = F(a) f[lhs(a). (7.8)

Let C =25-3%, M = P%*7 and Q = PM~'. Write
T =(C7IPIoQ=5 1+ CtpPi-oQ ).
Let m denote the set of real numbers « in Z with the property that whenever
a€Z, qeN, (a,q)=1 and |ag—al <CT'P77Q75,

then one has ¢ > P77 M?5. Let 9 denote the major arcs Z \ m; that is, the union
of the intervals
M(g,a) = o+ Jag — o < C-1PI=7Q5)

with 1 <a < ¢ < P179M° and (a,q) = 1.
We first consider the minor arcs m.

Lemma 7.1. We have

/ Fila)Fa(a)e(—an)da < pl2—o,

Proof. By Schwarz’s inequality we have

< (/01 |]:1(a)|2da)

The first integral on the right-hand side is

1/2

(/m |f2(a)]2da>1/2. (7.9)

1
/ [F()2f()"|da < PP*e, (7.10)
0

/ Fi(a)Fa(a)e(—an)da

by using the conclusions of §6 (see, for example, the note at the end of §3 of Wooley
[13]). Also, by the argument of Lemma 3.2 of Vaughan and Wooley [10], we have

6

1
1
[ (Sitert) o an.pisoors
0
Ps
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where
A =M (1—0)+ 1+ 1406. (7.11)

Note in particular that )\é" < 11.079825. Using this estimate, we may follow through
the argument of §4 of Vaughan and Wooley [10] to obtain

/15 \da<<H (MBI, + )"
s=1

where .
Js < Q§720+25M8P)\8 +5T+E,

and
I, < (PMg + (PM,)' 727 Hy) Qs e,

A little computation reveals that
/ | Fo()|?da < P01 (7.12)
m

with §; > 0.082. The lemma now follows on combining (7.7)-(7.10) and (7.12).

We now consider the major arcs 9. Let

v(B) = ) ta e(Bu),

and
q
Z e(ar®/q).
r=1
Define V(«) on 9 by taking
V(a) =q¢7'S(q.a)v(a — a/q)

whenever a € M(q,a). Since the M(q,a) with 1 < a < ¢ < P1=7M5 are disjoint,
it follows that V' («) is well-defined.

Lemma 7.2. We have

Zr(n; M) = /sm (H Z ) —an)da 4+ O(P?79%).

M
Proof. Write A(a) = F(a) — V(). Then by Theorem 2 of Vaughan [4], we have

Ale) < ¢ (g+ PPlag—a))'?  (a € M(q,a)). (7.13)
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Hence, for a € 9t we have A(a) < P?¢(P'=7M®)'/2, Then by Schwarz’s inequality,
/ A2 F(@)hs(0)®| dar < PY=oHE0 712 712, (7.14)
m
where
1 1
Jp = / 1f()|"da, and Jp = / s (a)|*C de.
0 0
By the conclusions of the previous section,
J <« PAMte, (7.15)

Also, it follows by the argument of Lemma 3.1 of Vaughan and Wooley [10] that

Jy < P HoTHe (7.16)

where A\J is given by (7.11). Then the right hand side of (7.14) is
< pl-otie s <PA7+5P>\Q+5T+5) 1/2 < pl2-5,
Next, by appealing to Lemma 4.6 of Vaughan [5], we obtain
V(a) < P(g+ P’lag—al)™Y?  (a € M(q,a)),
and hence, by (7.13),
V(@)A(a) < PHE(PIOM) T (€ Mg,a)).

Therefore, as above, we obtain
/ IV (a)A(a) f() hs()®| da < P2 (P2 MO T g2 1,2 < P20, (7.17)
M

by (7.15) and (7.16). Collecting together (7.6)-(7.8), (7.14), (7.17), and Lemma 7.1,
the proof of the lemma is completed.

Before proceeding to estimate the contribution of the major arcs, we establish
an auxiliary lemma. Let

18
do. (7.18)

> hy(a)

M,

1 1
K, :/ |f(a)[*®¥da  and Kés) :/
0 0
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Lemma 7.3. We have

Ky < P® and K{¥ <P® (1<s<3).
Proof. Write fi1(a) for f(a), and fa(a) for 3, hs(a). Let

Fi(e)= Y e(az®) (i=1,2),

1<z<P;

with P; = 2°=1P. Also, for the sake of convenience, write K, for Kés). Then by
considering the underlying diophantine equations, we have for ¢ = 1, 2,

1
Ki < [ 1Fi(0)fi(a)"|da.
0
We apply the Hardy-Littlewood method. Define
W(g,a) = {a:|ga —a| < 3P}
for 1 <a < q< P and (a,q) =1, and define 20 to be the union of these arcs, and

w = (&P % 14+ 5P*\2. Then by Weyl’s inequality, we have sup,c,, | ()| <
P1=9%¢ Hence

K; < P¥20+2  prite | / |Fi(a)? fi ()% )da, (7.19)
20

where A\§ (which satisfies \j > \g) is given by (7.11). By using Lemma 5.1 of
Vaughan [8] combined with Hélder’s inequality, we deduce that

IRz e < ([ (@) " (/ 1 i) o

<PBIRSI

8/9

Then by (7.19),
K’i < P13—5 +P13/9K~8/9

and hence K; < P'3, which completes the proof of the lemma.

We now attend to the matter of pruning the major arcs. Let W denote a pa-
rameter to be chosen later, and let 91 denote the union of the intervals

N(g,a) = {a:|ag —a| < WP},

with (a,q) = 1 and 1 < a < ¢ < W. We assume that 1 < W < P12 50 that
M C M. Let P =9\ MN.
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By Holder’s inequality combined with the methods of §4.4 of Vaughan [5] (cf
Lemma 5.1 of Vaughan [8]), we obtain, on recalling (7.18),

/%voz2 a)7£[1<%;hs(ap§)) da<<Kf78< K(S)> (/ [Vie |12da)

< (P13)5/6(P7W—65)1/6
< P12W_6.

By the methods of §5 of Vaughan [8], when W < log P, ¢ < log P, and (a, q) = 1,
we have

> gs(apd) = q ' S(q, )us(a—a/q)+0( §P(Q+P5!0¢q—a|))

where

log(2Px~1/5) 1 1 1/5 /M,
uS(ﬁ): Z ming Og(jbgM ) OgQ}é 5:0 <—Og(fogé ))B(BI)7

2<(2P)®
and p(z) is Dickman’s function, defined for real = by
p(x) =0 when = <0,

p(r) =1 when 0 < z <1,
p is continuous for x > 0,
p is differentiable for x > 1,
zp (x) = —p(x — 1) for z > 1.
Also, by Lemma 5.4 of Vaughan [8], we have

fla) = a8t ahule ~ a/a) + O (o pa + Plag —a) )

and
w(B) < P(1+ P°|18I)~"/°,

|
wg) = 30 b (SE clom).

R5<m<n

where

Then as in §5 of Vaughan and Wooley [10], we deduce that when ¢ is sufficiently
small, and W = (log P)?, then we have

/n V(a) f(a)” (H hs(oz)> e(—an)da = &(n)J(n) + O (P (log P)_g_é)
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where &(n) is the usual singular series in Waring’s problem,

q

sn) =Y 3 (¢'S(g.a)"" e(~an/q),

=1 a=1
4 (a,q)=1

and

J(n) :/0 v(B)%w(B)" (H us(5)> e(—pBn)dg.

Now by Theorem 4.6 of Vaughan [5], we have 1 < & < 1, and a simple counting
argument shows that J(n) > n'?/°(logn)~%. Thus

8
> ormM) =) /m V(a)?f(a) (H hs(a)> e(—an)da + O (P (log P) ™)

M M

and this completes the proof of Theorem 1.1 for fifth powers.

8. THE ITERATIVE SCHEMES FOR k > 6: SECOND DIFFERENCES

In the remainder of this paper we shall restrict attention to those k£ with 6 <
k <9. As usual, for s = 1 and 2 we have the classical bounds

S.(P,R) < P5t¢,
and for s = 3 and 4 we use the results of Theorem 1.4 of Vaughan [9]. These give

4+ (k—3)6

A3 =3+20 and M\ = R

where 6 is the smallest non-negative root of the polynomial
3— (3k? — (e +11)k + e +22)0 — (k(e + 15) — 3e — 48)0% — (2k + 2¢ + 32)6°
and
e=0, when k=06,7,9;
e=1, when k =38.
The values of A5 and A} obtained in this way are listed in the Appendix.
In what follows, we let (As) be an iterate of the sequence converging to (\%), and
we write § = ¢1 and ¢ = ¢2. Note that to obtain a reasonable initial iterate (Ag),

we may use the values given by Lemma 3.2 of Wooley [13]. Our argument divides
into cases according to the values of s and k.

(i) s=5and k=6,7,8.
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In these cases we adopt the iterative procedure displayed below.

B8 — Rff — Bff = (F3)i0 (F3) 1 (£3°)3

|

10
1
e =0, whenk=328;
e=1, when k=06,T7.

Then by Theorem 3.10(Ib) case (i) when & = 6,7, and Theorem 3.10(II) when
k = 8, we have

1
/O |Fy(a)Pda < P HyMI €. (8.1)

Also, by Theorem 3.11(I) case (i) when k = 6,7, and Theorem 3.11(II) when k = 8,
we have

1
/O |Fy(a)|[*da < P2 H3 My ™©. (8.2)

Then proceeding as described in §2, using the iterative sequence for s = 5 given
above, the equations for A5, # and ¢ are determined by

A3 1/2 3/5 1-2 2\ 30
PH M MQ) ~ PY2(H Hy) P (M M) =3 (@) (83)
. . 1/2
PMQY ~ (POLIN2MSQY QYY) (8.4)
P o~ PMBQY. (8.5)

On writing 6 = 6A5 — 10A%, equation (8.3) leads to the equation

0(1—60—¢)+4(k—e)f —3— (6k+4e)p =0,

and hence 5 A=) +5(1-6) =3 56
6k +4e+ 6 ' '
Meanwhile, equation (8.4) leads to the equation
2040+ 2(1-0)=X(1—-60)+A5(1 -0 —¢) +3—(2k —2)0 + 6¢.
On writing £ = A5 — 2] + A3, we obtain
E(1—-0)+1—2k0 = (N5 —6)o. (8.7)

Write
A3 —6

«= 6k +4e+ 46
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Then (8.6) and (8.7) yield

B 1+&+a(3-9)
2k +E+a(dk—e)—0)

From (8.5), the next iterate for A5 is therefore given by
Af = Ni(1—60)+ 1+ 86.
The above iteration process converges to A\, with
A =M (1—05)+ 1+ 865, (8.8)

where 65 is a root of the cubic equation obtained by substituting the expression
(8.8) into

(2k + & + a4k —e) — 6" )05 = 1 + £ + a*(3 — &%),

with

_ A6
6k +4de+ 6%
The values of A} obtained in this way are listed in the Appendix.

(ii) s=6 and k = 6,7,8.

In these cases we adopt the iterative procedure displayed below.

5= 6AL — 10A;, £ =X —2\ 4 AL, o

BRI — RA — RfS = G

12
1

We observe that the estimates (8.1) and (8.2) hold once again. Then proceeding as
described in §2, using the iterative sequence for s = 6 given above, the equations
for \g, 0 and ¢ are determined by

PH M, MyQ* ~ PY(Hy Hp)*/* (M, My)' =3¢ (Qég)l/2 ( 96)1/4, (8.9)
PM; Q)" ~ (P(M1H1>2M§ ) is) " (8.10)
P ~ PMMQ). (8.11)
On writing 6 = 2A\! + A\¢ — 4}, equation (8.9) leads to the equation
d(1—0—¢)+ (k—e)f — 3k +e)p =0,
and hence

(k—e)0+06(1—0)
3k+e+0 )

¢ = (8.12)
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Meanwhile, equation (8.10) leads to the equation
204+604+X(1—-0)=X(1—0)+ A1 —60—9¢)+3—2(k—1)0 + 8¢.

On writing £ = A\¢ — 2% + A}, we obtain

E(1—0)+1—2k0 = (\: —8)¢. (8.13)
Write
. A —8
 3k+e+d

Then (8.12) and (8.13) yield

B 1+&—ad
S 2k+E+alk—e—0)

From (8.11), the next iterate for Ag is therefore given by
6=A(1—6)+ 1+ 1006.
The above iteration process converges to A\g, with
Ae = A5(1—6g) + 1+ 1066, (8.14)

where 6g is a root of the cubic equation obtained by substituting the expression
(8.14) into
2k+E +a"(k—e—06")g=1+E" — a0,

with
AL —8

T 3k+e+or
The values of \§ obtained in this way are listed in the Appendix.
(iii) s = 5,6 and k = 9.

In these cases we use the iterative procedures displayed below.

FF = 2N AL — AN, EF = AL —2M 4 AL, o

s =0>.
FBf8 — Rff — Bff = (F3)Y2(f3%)4/?

10
1

F3fe® — Rfl® — Bff = (F5)YO(F)O(f)*°

|

12
1
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The iterative procedure is now more complicated since both schemes depend on
both A5 and Ag.

By Theorem 3.10(Ib) case (i), we have estimate (8.1) with e = 1. Also, by
Theorem 3.11(I1), we have estimate (8.2) with e = 0. Thus we find that the initial
arguments of parts (i) and (ii) of this section hold, but with (8.3) replaced by

A3 1/2 1/2 X6 1/2
PHM My Qy* ~ PY2(HyHo My M) (@)

and (8.9) replaced by

N 2/3
PH M MyQ)* ~ PY?(Hy Hy)*/3 (M My)>/6 <Q§6> :

Writing 0, ¢s for ¢1, ¢o for each s, we find that the next iterates for (Ag,0s, @)
(s = 5,6) are given by

A =N (1—65) + 1+ 805,

with
_ (B—=1)05+5(1 —65) — 1
¢5 = K T110n :
b — 1+ & —as(1—165)
2k + &5 — as(k —1—55)’
€5 = A5 — 2\5 £ AL,
d5 = Ag — 2)3,
6N
T PR I
and
Ay = As(1 — ) + 1+ 100,
with
(2 —1)06 + (1 — 06) — 1
%6 = 4k + 1+ b6 ’
1+ & — ag(1l —d)
O =

N 2]{:+€6—a6(2k—1—§6)’
6 = As — 205 + A,

86 = 4Xg — 6L,
8
O T 4k + 1+

The converged values for A} and A\§ obtained in this way are listed in the Appendix.
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9. THE ITERATIVE PROCESS FOR k > 6: THIRD DIFFERENCES

When k£ > 6 we need to make use of differences higher than the second. As
usual we let (\;) be an iterate of the sequence converging to (\%), and to simplify
formulae we write 8 = ¢1, ¢ = 2, and ¥ = ¢3. Note also that we may use the Ay
already established for smaller ¢, and Lemma 3.2 of Wooley [13] to provide initial
values for the \; under consideration.

Let
{e:O, when k = 9;

e=1, when k=26,7,8.

By Theorem 3.10(Ib) case (i) when k& = 7,8, and Theorem 3.10(1I) when k£ = 9, we
have

1
/O |Fy(0)2da < PYH Hy N2~ (9.1)

Also, by Theorem 3.10(Ib) case (iii), estimate (9.1) also holds when k = 6 provided
that
0+ (k+1(p+1¢) <2 (9.2)

Further, by Theorem 3.11(I) case (i) when k = 8, and Theorem 3.11(II) when k& = 9,
we have

1
/O |F3()|*da < P> H3 M€ (9.3)

Also, by Theorem 3.11(I) case (iii), estimate (9.3) also holds when k¥ = 6 and 7
provided that inequality (9.2) is satisfied.

We divide into cases according to the values of s and k.
(i) s=T7and k =6,7.

In these cases we adopt the iterative procedure displayed below.

Ff? w— A2 — Bl — Bff = (F})(F)s(f1?)5

l

14 12
1 2

As one discovers on performing the iteration described below, the values of 8, ¢, v
arising when k& = 6 and 7 satisfy inequality (9.2). Then proceeding as described
in §2, using the iterative sequence above, the equations for A7, 6, ¢ and 1 are
determined by

PH ML MQ) ~ PY2(H3M;5)2/3Q20 /3, (9.4)

PH, M, M0 ~ (P(E, )2 M50 0N ) 9.5

112Q2N(22)323 ) ()
. o\ 1/2

PMQY ~ (P (H1M1)2M§°Qi7c)§5> : (9.6)

PN ~ PMI2Q. (9.7)
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On writing 6 = 4\§ — 6}, equation (9.4) leads to the equation

(1 —0—¢—)+ (2k—2)(0+ @) — (4k + 2)p — 3

and hence

2k —2-06)(0+¢) -3+

Y= Ak +2+06

Similarly, on writing
Ea = Ag — 2X; + A},

equation (9.5) leads to the equation
Ex(1—0— @) +1— 2k = (N — 8)9.
Write

A5 — 8

=k r2+4

Then (9.8) and (9.10) yield

¢

14 E(1-6)+ay (30— (2k—2-0)f)

2% + & + az(2k — 2 — 0)

On writing
51 = )\7 — 2)\2 + )\;,

equation (9.6) leads to the equation
E1(1—0)+1—2k0 = (A\; — 10)¢.
Write

B AL — 10
2k +E +ax(2k—2—6)°

aq
Then (9.11) and (9.13) yield

. 148 —a1 (1+ &+ az(3—9))
T2k + & - (&2 + a2k —2-9))

From (9.7), the next iterate for A7 is therefore given by

T=X(1—6)+1+126.

(9.8)

(9.9)

(9.10)

(9.11)

(9.12)

(9.13)

(9.14)

The values of A3 obtained through the use of this iterative procedure are displayed

in the Appendix.
(ii) s =7 and k = 8,9.
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In these cases we adopt the iterative procedure displayed below.

4
7

F3fy? — Fifi? — B — FBff = (FP?)%(F:?)ﬁ(?}AL)

|

14 12
1 2

The argument of part (i) of this section holds, but with (9.4) replaced by
PH, Mo M3Q) ~ PY2EY TN 70 Q7.
On writing § = 8\; — 14}, this modified relation leads to the equation

5(1—0—¢— 1) + (6k — 6e)(0 + ¢) — (8k + 6e)v — 11 = 0,

and hence
o= (6k —6e —9)(0 +¢) — 1140
- 8k + 6e+ 6 '
Write
oA -8
T Rkt 6et+o

Then proceeding as in case (i), we find that

14861 —0)+a(11 -6 — (6k — 6e — 9)0)

¢ 2k+(€2+0&2(6]€—66—5) ’

where &, satisfies (9.9). Next, on writing

B AE—10
2k + & + ag(6k — 6e — )’

aq

we find that
9 — 1—|—(€1 —a1(1—|—52+a2(11 —5))

T2k 4+ & — a1 (E + az(6k — 6e — §))’

where & satisfies (9.12). With these definitions, the next iterate A, can be calcu-
lated via (9.14) once again. The converged values of A} are given in the Appendix.

(iii) s = 8 and k = 6,7, 8, 9.

In these cases we use the following iterative procedure.

Rt — Rt — Bf? — Ff]' = (F:?)%(y)%(?}él)%

16 14
1 2

As one discovers on performing the iteration described below, the values of 6, ¢,
1 arising when k = 6 and 7 satisfy inequality (9.2). Then proceeding as described
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in §2, using the iterative sequence above, the equations for Ag, €, ¢ and 1 are
determined by

PﬁzMQMSQ;,\; ~ Pl/Qﬁ??MM?}_% :)3\3/4 g;/2a
g A2 110 AN A L2
PH, M, MyQ)° ~ (P(H2M2) MIQY Q) ) :
. N\ 1/2

PaLQY ~ (P AL MR QY )

P ~ PMMQ)T.

Let
5= 2N £ AL — 4XL,
- 10
2T 3k teto
£ = A% — 2\L 4+ AL,
. A5 — 12

2k+52+a2(k—e—5)’
E1 = Ag — 2)\; + )\2;
Then, arguing as in previous cases we obtain

(k—e—0)0+¢)—1+6

V= 3k+e+6 ’

. 1—|—82(1—‘9)+042(1—6—(]€—6—5)0)
¢_ 2k—|—52+a2(k—e—5) ’
o — 1+& —a1 (14 & + a(1l —9))

- 2k + & — o (824-&2(]{3—6—5))'
The next iterate for \g is given by
s = A1 —10)+ 1+ 146.
The converged values of \§ are given in the Appendix.
(iv) s=9 and k = 8.
In this case we use the following scheme.
Ffs — Al — Rfi' — Ffi? = (F)V(f3

| |

18 16
1 2

The equations for Ag, 6, ¢ and ¢ are now determined by
= - Xo o PL/2(F KT N\3/4 A 3N
PHyMyM3Q3° ~ P2 (HsMs)* *Q47®,

A7 211200 ) 2

PHM My Q) ~ (PUELNBPMPQY Q) )

PM QY ~ (P(HM)?MPQP Q)

P ~ PMMQ)®.
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Let
5 —

g =
E =
a1 =

& =

35 — 4,
Ap — 12
3k+1496’
A5 — 2% + NG,
Ar—14
2k + & + an(k —1—4)’
Ao — 205 + AL

Then, arguing as in previous cases we obtain

=

(k=1-0)(0+¢)—1+6

¢

3k+1+96 ’

:1+€2(1—9)—|—C¥2(1—5—(k—1—5)9)

9_

2]€—|—52+Ck2(k—1—5) ’

1—|—51—a1(1+52+042(1—5))

2%k + &

—041<52+O[2(k—1—5)).

The next iterate for \g is given by

I
9

= A\5(1—0) 41+ 166.

The converged value of A§ is given in the Appendix.

10. THE ITERATIVE PROCESS FOR k > 7: FOURTH DIFFERENCES

59

In the analysis of the iterative procedures involving fourth differences, we follow
the pattern established in previous sections. In our applications of Theorems 3.10

and 3.11, we require bounds on certain

\(27F)

[9], in the same manner as at the start of §8, we find that

. By using Theorem 1.4 of Vaughan

A < 410200120, AL < 408542333, A < 403655147, A < 4.03192910.

Then by Theorem 3.10(Ib) case (ii), and Theorem 3.11(I) case (ii), we have the

bounds

1 1
/ |Fy()|?da < PYTEHy My, / |Fy(a)|*da < PP HI M,
0 0

whenever ¢; < O(k), where

©(7) = 0.140805,

©(8) = 0.124431, ©(9) = 0.110718.

It transpires that for k = 7,8,9 the condition ¢; < O(k) is always met in the cases

considered here.
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(i)s=9and k=T1.

In this case we adopt the following iterative scheme.

F3f3— FufI® — Fafyt — Fafi? — Fufl® = (F)5 (F)3 (f19)3

I

oo g
Thus A9, and ¢, ..., ¢4 are determined by the equations

Pﬁ3M3M4Qi‘; ~ P1/2(ﬁ4M4)5/8QZA§/8,
. v o 10 anE A /2
PHy My M3 Q) ~ (P(HgMg) MIQ) Q45> ,
Y o2 120 AN ) 2
PHMMQ) ~ (PULNLPMPQY Q)
PMQY ~ (P(HM)?MEQY QY )
A*
P ~ PMSQ7®.
On writing 6 = 5A§ — 8\, we obtain

(3% —3— 6)(d1 + ¢+ bs) 8+

1 = 5k+34+0

Next, on writing

S5 = N\ — 2\ + AL,
AL — 10

o3 = ———

T 5k+3+4’

we have

C1+80 -1 —¢2)+az3(8—0— 3k —3—-0)(¢1 + ¢2))
- 2k+53+043(3k—3—5)

¢3

Then, on writing

Eo = N5 — 205 + )5,
B s — 12
2k + & +a3(3k—3—106)’

(65]

we find that

1 + (52 — 06253)(1 — (bl) — Q9 (1 + (6% (8 — 5 — (3]42 -3 - 6)¢1))
2k’+52—042((€3—|—043(3k—3—5)) '

P2 =

(10.1)

(10.2)

(10.3)
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Finally, on writing
E1 = Ag — 20§ + A7, (10.4)

_ A —14
a 2k+52—a2(53+a3(3k—3—5))’

aq

we deduce that

b1 = 1+€1—a1(1+52—a2(1+83+ag(8—5)))
Y2k & —an (& — s (E3+a3(3k—3—10)))

The next iterate for \g is given by
Ao = A5(1 = ¢1) + 1+ 16¢;. (10.5)

The converged value of \j is given in the Appendix.

(ii) s=9 and k= 9.

In this case we adopt the following iterative scheme.

2140 v P IS — By fit — Py f2 — Fy f10 = (F2)1s (F) s (£18)3

L]

18 16 14
1 2 3

Thus, on replacing (10.1) by the equation
Pﬁ3M3M4Qi; ~ P2 (HyMy)Y°QY”,

and leaving the remaining defining equations unchanged, we may apply an analo-
gous analysis to that used in part (i) of this section. Thus we obtain

(8k —8 —0)(¢1 + d2 + ¢3) — 23+ 6
10k +8+46 ’

Pa =
where § = 10\g — 18A%. Next we obtain

1+ &0 —¢1—¢2) +ag(23—0— (8k —8—0)(d1 + ¢2))
B 2k + &3 + a3(8k — 8 — ) ’

¢3

where &3 satisfies (10.2), and

AL — 10

BT 0ktr8+0
Then we find that

B 1 + (52 - 04283)(1 — ¢1) — (9 (1 + Qs (23 - — (8]{? — 8 — 5)¢1))
N 2k’+52—042((€3—|—043(8k—8—5)) ’

P2
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where & satisfies (10.3), and

B s — 12
2k +E+a3(8k—8—6)°

a2

Finally, we deduce that

é :1+81—a1(1+52—a2(1+53+a3(23—5)))
YTk 4 & —ay (& — az(Es +as(8k—8—14)))

where & satisfies (10.4), and

- A 14
o 2]€—|—82—C¥2(53+043(8k_8_5))'

aq

The next iterate for Ag is then given by (10.5), and thus we obtain the converged
value of \§ given in the Appendix.
(iii) s =10 and £k = 17,8,9.

In these cases we use the iterative scheme displayed below.

R — O ff® — LfiS — Bfir — Ff?2 = (FEHYA(fI6)%/4

| | |

20 18 16
1 2 3

Thus Aig and ¢4, ..., ¢4 are determined by the equations

PH Mz M,Q) ~ PY2(H, M, )3/ 4Q3 /1,
Sy A7 o N2 124N ) 2
PH,NLM;Q) ~ (P(H3M3) MRQY¥Q) ) ,

*

g T AT \2 2714 A6 AT 1/2
PH\ M, MyQ) ~ (P(HQMQ) MMQY Q) ) ,
PMQY ~ (P(HIM)?MISQPQ) )
A*
PMo ~ PMI3QT°.

Hence we obtain (h—1-8)(6 5 bs)— 246
. -1 1+ Q2+ @3) — 2+
1= 3k+1+6 (10.6)

where § = 3\ — 4)\;. Next we find that

1+ &g —pa) Faz(2—5—(k—1—08)(¢1 + b2))
- 2%k + &+ az(k — 1 — 6) ’

¢3 (10.7)

where £3 = A\ — 27 + A\§ and

AL — 12

YA
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Then

(b _ 1 —I— (52 — 04253)(1 — ¢1) — Q2 (1 —f-Oég (2 — 5 — (k‘ — 1 — 5)¢1)) (10 8)

2 2k+52—a2(53+a3(k—1—5)) ’ ’
where £ = A\§ — 2A% + A7 and
B A —14
T Skt & task—1-0)
Finally, we deduce that
1+& —a1 (1+E —as(1+E+a3(2—6
by = 1 1 ( 2 2 ( 3 3( ) (10.9)

2k + &1 — o (52 — Q9 (53+a3(k—1—5))) ’
where 51 = )\10 — 2)\3 + )\g and

B A5 — 16
o 2]{34-52—042(53%—0(3(]{—1—5))‘

1

The next iterate for Aqq is then given by
o =A5(1—¢1) +1+18¢1,
and thus we obtain the converged values of A}, given in the Appendix.
(iv) s=11 and k£ =17,8,9.
In these cases we use the iterative scheme displayed below.

F3f30 v i f20 — Fofl® — F3f36 — Fyfi* = (F})7(f1%)2 (f30)1

L]

22 20 18
i f5 3

Thus A1; and ¢4, ..., ¢4 are determined by the equations
~ ~ * ~ ~ l * l *
PHs My MiQ)7 = PY2(H NP/ Q3 i0,

. A\ o am\1/2
PN My Q3" ~ (UMM QY Q) )

*

g A2 116 N0 )
PH, M MyQ5° ~ (P(H2M2) M3>Q5"° Qs ) 5
i o\ 1/2
PMQY ~ (PHM MR QI Q) )

11 ~ A*

P~ PMPQ™.

Hence we obtain ¢4 as in (10.6), but with § = Aj; + 2A§ — 4\, Next we find that
¢3 is as in (10.7), but with £ = A§ — 2A§ + A% and

A5 — 14

YA
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Then ¢5 is as in (10.8), but with & = A, — 2A§ + A§ and
B As — 16
2k +E +as(k—1—-190)
Finally, we deduce that ¢; is as in (10.9), but with & = A1 — 2A\], + A§ and
Ay — 18
T2kt & —an(Estaz(k—1-0))
The next iterate for Ay is then given by
A1 = Ao(1 = ¢1) + 1+ 20¢1,
and thus we obtain the converged values of A]; given in the Appendix.
(v) s=12and k =T.
In this case we use the following iterative scheme.

F3 32 v FifP2 — Faf30 — F3fa® — FufiS = (F})1(f30)1(f7?)3

Ll

24 22 20
1 2 3

Thus A2 and ¢4, ..., ¢4 are determined by the equations

Q2

a1

Pﬁ3M3M4Q2§ ~ P1/2ﬁ2/4Mj/4Q§)\IO+§AT17

7N Ag N2 116 N0 A 2
PH,NLM;QY ~ (P(H3M3) MIQYQ) ) :

A o218 AN AN 2
PH{ M M3@Q5"° =~ (P(H2M2) M3~Q5" Qs ) 5
PMlQi‘u ~ (P(H1M1)2M220Q?12Q;‘10> ’
Al
Pz~ PMEQM.

Hence we obtain ¢4 as in (10.6), but with § = Aj, + 2A7; —4A]. Next we find that
¢3 is as in (10.7), but with & = Ay — 2A§ + A§ and

AL — 16
RV
Then ¢ is as in (10.8), but with & = A}; — 2], + A$ and
A5 — 18

a2 = 2k‘—|—53+0(3(k—1—5)

Finally, we deduce that ¢4 is as in (10.9), but with & = A5 — 2A\}; + A], and
B 10— 20
- 2k + &5 —Oég(gg—i—(l/g(k— 1—5)).
The next iterate for A5 is then given by
12 = A1 (1 —¢1) + 1+ 224,

and thus we obtain the converged value of Aj, listed in the Appendix.

a1
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11. THE ITERATIVE PROCESS FOR k > 8: FIFTH AND SIXTH DIFFERENCES

In the following analyses we once again follow the pattern established in previous
sections. In our applications of Theorem 3.10 and 3.11, we require bounds on certain

AZ7®) By using Theorem 1.4 of Vaughan [9] and Lemma 3.2 of Wooley [13], we
find that

A <3.0099996, A <3.0076932, [ < 5.2248045,

AU < 64002032, AL < 6.3497957.
(a) When k = 8, by Theorem 3.11(I), whenever

¢1 < 0.119329 (11.1)

we have the estimate
1 ~ ~
/0 |Fs(a)*da < PP H3MZTT, (11.2)

where

r=1 (A8 +A8Y) 1 < 0.002000,

(b) When k£ = 9, by Theorem 3.11(I) case (iii), the estimate (11.2) holds with 7 =0
provided that

I
> "6+ k(dr-1 + ¢1) < 2 (11.3)
i=1
when [ = 3,4,5. Also, by Theorem 3.11(I), whenever
é1 < 0.107131 (11.4)
we have the estimate
1 ~ ~
/ |Fs(a)|*da < PP HIMSTT, (11.5)
0

where
=12 —1<0.002565.

Further, by Theorem 3.11(I) case (iii), the estimate (11.5) holds with 7 = 0 provided
that (11.3) holds when I = 3,4,5,6. Under the same condition, by Theorem
3.10(Ib) case (iii) we have

1
/ |Fs(a)|*da < P Hg M. (11.6)
0
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Naturally, we may use the weaker estimates contained in Theorems 3.10 and 3.11
in order to obtain a good approximation to the converged solution. In the cases
under consideration, this amounts merely to using a slightly inflated value of 7.

(i) k=8 and s = 12,13,14,15, and k =9 and s = 12,13.

In each of these cases we use the scheme

FO 25—2
l
F1f28 2 Ny 7 f2$ 4—>F3f2s 6—>F4f28 8—>F fQS 10 (F4> ( 2t— 2)as(fgt)bs
! ! ! !
2s 25—2 2s—4 25—6
1 2 3 4
where

t=[4s—17)], as=20, by=3(1-0), 0=1t— L(4s—20).

It transpires that in the execution of the iterative process described below, the
values of ¢ which arise ultimately satisfy condition (11.1) when k£ = 8, and condition
(11.3) when k£ = 9. Thus (11.2) holds with

B 0.002000 when k£ = 8,
T 0 when k£ = 9.

Then A; and ¢ are determined by the equations

~ o~ * ~ 3 ~ 34T  3Bpgy* 31— *
PH4M5Q23_5 ~ P3 5431 5° Qge/\t_ﬁ—‘l(l Q)Ata (11.7)
r7 Y A:— ] Y S s—J A: j—1 1/2 .
PH; o M,Q0 ~ (PULNG MY Q7w Qry ™) (7 =4.3,2),
(11.8)
s—1 2 2s—4 s—2 /2
PMQy " ~ (PO M) METQY Q) (11.9)
S— A:—l
P = PMP2Q] (11.10)
Let
§ =30\, 4+ (3—30)AF —4\!
g]_:)\ —2)\* 1+)\S 2 (1111)
Ei=N_j =2\, + XN, (1=2,3,4). (11.12)
Write
k;=2(s—j)—Ni_; (2<j<5). (11.13)
Define

=Bk+1+6—7)""Y, Bs=—k+14+6—7, y5=6-3,
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and for j =4,3,2,1, define a;, 8; and ; successively by

Vi = 1+ g]‘ + Rji41Q54175+1, (11.14)
Bj =& + ki1 08541, (11.15)
= (2k+ 6;) . (11.16)

Then we find that ¢ and )\, satisfy

gbj = Qj (’)/j—ﬁj(gbl"“'""qu—l)) (1 S]SS)v (1117)

and
As = Ao = ¢1) + 1+ (25 = 2)¢1. (11.18)

The values of A\’ obtained in this way are displayed in the Appendix.
(ii) kK =9 and s = 14.
In this case we use the following scheme.
B 130
l 1 5 8
Fiff% — Fofd'— Fs 3= Fufi%— Fs f3%— Fo f§°— (F§) > (Fg) > (f&3) ™
! | | | |

28 26 24 22 20
1 2 3 4 5

It transpires that in the execution of the iterative process described below, the
values of ¢ which arise ultimately satisfy condition (11.3) for I = 3,4,5,6. Conse-
quently, A4 and ¢ are determined by the equation

PH; MsQy* ~ P3 (HMg) T Q4
5 6Q6 ~ (6 6) QG )

together with (11.8) (for s = 14 and 2 < j < 5), and (11.9) and (11.10) (with
s = 14). Let

§=16\7, —22)5, g = (16k+6+0)"", fBsg=—6k+6+0, ~s=20—25.

Then with s = 14 and k = 9, we find that ¢ and \}, satisfy (11.17) (1 < j <

(11.18), with (11.13) (1 < j < 5), and for j = 5,...,1, (11.14), (11.15), (11.
The value of \], obtained in this way is given in the Appendix.

(iii) k =9 and s = 15,16, 17, 18.

In these cases we use the scheme

6) an
16).

FO 25s—2
l
FlfQS 2 —>F f28 4—>F3f28 6 S F fQS 12 (F4) ( 2t— 2)a5(f62t)b5
! | |
2s 25—2 25—8

1 2 5
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where

t=[3(s—21)], as=236, b,=2(1-0), 6=t—1(4s—24).
It transpires that in the execution of the iterative process described below, the
values of ¢ which arise ultimately satisfy condition (11.4). Thus, on taking 7 =
0.002565, we find that Ay and ¢ are determined by the equation

3~ 34T BgN*  4+3(1-0)A\]
4 4 47N —1T7 t
6 M6 QG )

together with (11.8) (with j =5,4,3,2), (11.9) and (11.10). Let

N[

Pﬁ;jMﬁQg\:_G ~ P

§=30N_1 + (3—30)\] — 4\, _,
and define £; as in (11.11) and (11.12) (2 < j < 5). Also, let
ag=Bk+1+0—-7)"", Be=—k+14+6—7, 5=20—4

Then with & = 9, we find that the ¢ satisfy (11.17) (1 < j < 6) and (11.18), with
(11.13) (1< j < 5), and for 1 < j < 5, (11.14), (11.15), (11.16).
The values of A% obtained in this way are given in the Appendix.

12. THE ITERATIVE SCHEME FOR SIXTH POWERS: s > 9.

For s > 9, our treatment of sixth powers requires a Hardy-Littlewod dissection.
Further, since our conclusion entails the use of all available savings, the treatment
requires considerable attention to detail. The next iterates for Ag, A1g, A11 and Ao
are mutually dependent, and so we are forced to iterate these values collectively.
Our exposition will be facilitated by first recording some preliminary lemmata.

Lemma 12.1. Lett, u and v be positive integers exceeding 3, and let w = ﬁ (% + %)
Suppose that g1 > ¢y > ¢3 > &
. 3 A3 —23/6
U < min {Mg,PH1H2H3 L QI Qs M, } : (12.1)

and

7 = PU'~t (P%Mg?t_lz_“t)w (PéM§“‘12_““)l/u (Péva_m—”“>1/U

Then
1 1 o
[ o < Py (215 oY)
0

Proof. By standard Weyl differencing we have

|F3(CY)|2 <K P(M3ﬁ3)2 + M3ﬁ3|G(a)|, (122)



FURTHER IMPROVEMENTS IN WARING’S PROBLEM. 69

where

Gla)=> > e (a275T,(22 + h; 2h, h;m, 1)) ,
h m

h<P3 0<z<Ps—h
and the summations are over m and h satisfying (2.1). Write
C(M)=A(MR,R)N (M, MR]. (12.3)

Recalling (3.1), (4.1) and (4.2), we may follow the analysis of the proof of Lemma
6.1 to deduce that

G(a)? < PED(a)Ey () ™ Ey(a)® Es(a)/* Ey(a)'/?, (12.4)
where
D(a) = Ds(a; P, @),
Ei(a) = Fy (a; 7680H Hy Ps, Hs, M3;C(M3)) ,
Es(a) = By (o; T680H, Ho Ps, Hs, M3;C(Ms)),
Es(a) = By, (a; 3840H, H3 P3, 2Hy, My; C(Ms))
)

We now recall Definition 4.9. Suppose that @ € m3. By Dirichlet’s theorem
there exist b € Z and r € N with

(b,r) =1, r<P7'QS and |ar—b < PQ3S.

On noting that our assumptions on ¢ imply that P < P~1Q$, we deduce from
Lemma 4.1 that
QS

r—+ Qg|ar — b

D(a) < P¢ ( + P—1Q§> .
But a € mg, so either r > P or QS|ar — b > PR™'®, and hence
D(a) < PF1QS < P> Hj. (12.5)
Next, since U < Ms, we have U® < P, and hence
U < P1Q5 <U°Q5.
Then by Lemma 4.3, we have
Ei(a) < PY*e M2 ((r +Q8lar — b)) ° + U—1>
< PYeHM2UL. (12.6)
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We now observe that our hypotheses on ¢ imply that
SPyH Hy M2 Hy? > M3 (M My)~% > P2 and M3? > PY/3,
Then we may apply Lemma 4.6, with Y = P'/3 and X = P~'Q$, to deduce that

Ey(a) < PV H M <(r +QSlar — b|)—1/3 n P’l/?’)

< P23+ Ha M2, (12.7)
Similarly, we have .
Es(a) < P23+ HaMbm 12, (12.8)
and 3
Ey(a) < PY3+eHapi 12, (12.9)
Thus, by (12.2), (12.4) and (12.5)-(12.9), we have
sup |Fs(a)| < PYTeHsMsZ 44, (12.10)
acms

Now suppose that a € 913. By Dirichlet’s theorem there exist a € Z and ¢ € N
with (a,q) = 1 and satisfying (4.24). Then since a ¢ mg3, such an a and ¢ exist
with 0 < a < ¢ < P. Thus, by Lemma 4.7 we have

F3(e) < Fi (@) + P35t HyMs, (12.11)

where F3(«) is defined as in Definition 4.9(iii). Our hypotheses on t, u, v and ¢
imply that

Z1/4 < <PU1—thétw>1/4 < Pl/S,
and so by (12.10) and (12.11) we deduce that
1
[ 1Fs@n(@ | da < PRz QR 41 (212
0
where
= / |F (@) f3()9] dav.
M3

But by Holder’s inequality,
1< JA 2 (12.13)

where

1 1
Ji :/ | f3()]*0 dar,  Jo =/ |f3()|? da, and Js :/ |5 (a)|* dov.
0 0 N3
We have J; < Q§1°+5 and Jo < Qg‘““. Further, by Lemma 4.10 we have J3 <

P(PH3Ms3)*Q55. The lemma now follows by (12.12) and (12.13).

Our analysis will be simplified by the use of the following lemma. We write

fles@Q) = ) e(az®).

z€A(Q,R)
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Lemma 12.2. Suppose that 1o — 18 < 6i4. Then

1
/ Flo: Q)P da < Q%
0

Proof. Write A = A5 — 18. Then, by an argument mirroring precisely the proof
of Theorem 1.8 of Vaughan [8], we may draw the following conclusion. Suppose
that 0 < 9§ < 11—2 Let m denote the set of real numbers a with the property that
whenever a € Z, ¢ € N, (a,q) = 1 and | — a/q| < g 1Q21%9=6 then one has
g> Q2% and let p = 15(1 = A). Then

).
sup f(0;Q)| < Q(Q™° +Q77).

1

51> and hence

We take § = é. Then by hypothesis we have p >

1
/ |f(a; Q)[Pda < Q23+5/ |fla; Q) da < Q1= (12.14)
m 0

Now suppose that o ¢ m. Then by Dirichlet’s theorem we may choose a and ¢
with
(a,q) =1, lga—a| <QF*¥C and ¢<Q>F%. (12.15)
We write M(q, a) for the set of such « satisfying (12.15), and 9t for the union of
the M(q,a) with (a,q) = 1 and 1 < a < ¢ < Q2% Then if & € M(q,a), by
Lemma 7.2 of Vaughan and Wooley [10] we have

fla;Q) < Q' ((Q+Q6|aq—a|)_%2 +Q*6*14>. (12.16)

Define V*(a) to be the function of « taking the value zero whenever a € m, and by
1

V(@) = Q" (g+ Q°lag —af) ™

whenever a € M(q,a) with (a,q) =1 and 0 < a < ¢ < P. Then from (12.14) and
(12.16) it follows that

1 1
/ Fla: Q)PPda < / V* (@)l (05 Q)P da + QU+,
0

0
But by Holder’s inequality, the latter integral is

1 24
5

< (/01 V*(a)25da) B (/01 f Q)|25da> o

1 1
/ |f(a;Q)|25doz < Q19+E+/ V*(a)25da<<Q19+E,
0

0

Thus

which completes the proof of the lemma.
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Lemma 12.3. Lett and u be positive integers exceeding 3, and w = ﬁ Let v

be either 9 or 10, and define K(9) = %)\11 + %)\12 — %, and

%)\12 + %)\13 — g when )\12 — 18 Z é7
K(10) =
14 when Ao — 18 < é.
Suppose that ¢ > ¢ > %, and
1/u

7 = PMll—tw <Pl/3M12t7127ut>“’ <P1/3M22“’12*““>
Then ,
| 1@ o) lda < PUedG R (27400 +@5).
0
Proof. By standard Weyl differencing we have
[Fa(a)|* < P3(MzHs)" + P(MH>)*|G(a), (12.17)
where

Ga)=> Y > Y > e(27%Wy(22 + I +1p;2h, 1y, ly;m, 1, 1))
h m <Py 12<P>

11 <P Py 0<z<Py—11—12

and the summations are over m and h satisfying (2.1). Recalling (12.3), (3.1), (4.1)
and (4.2), we may follow the analysis of the proof of Lemma 6.1 to deduce that

G(a)? < P*D(a)E;(a)' ™ Ey(a)® Es(a)t®, (12.18)

where

FEs(a) = Ey(a;960H, PZ, Ho, My; C(M>)).

We now recall Definition 4.9. Suppose that o € my. By Dirichlet’s theorem,
there exist b € Z and r € N with

(b,r)=1, r<P7'QS and |ar—b| < PQ;°.
Therefore, by Lemma 4.1, we have

QS
"+ Qlar — bl

D(a) < P¢ ( +P—1Qg> .
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But a € my, so either 7 > P or QS|ar — b| > PR™2?4, and hence
D(a) < PF71QS < P*T¢ H,. (12.19)

Next, on noting that
M7 < PT1Q3 < My °Q5,

we may apply Corollary 4.2.1 with X = P71Q$ to deduce that
Ex(a) < P2 ME ((r+ QSlar — o)/ + M)
< PP H HyM,. (12.20)
We now observe that our hypotheses on ¢ imply that
OPZH,MPH;? > MM > P2, and M} > PY/3
Then we may apply Lemma 4.6, with Y = P'/3 and X = P71Q5, to deduce that
Es(a) < P2+EI:I2M§”+12 <(7° + QSlar — b|)_1/3 + P_l/g)
<« PO/3%E Hy M2, (12.21)

Similarly, we have }
Es(a) < PY/3+e Hy M2, (12.22)

Thus, by (12.17)-(12.22), we have

sup |Fy(a)| < P H My Z 748, (12.23)

acmg

Now suppose that a € 9. By Dirichlet’s theorem there exist a € Z and ¢ € N
with (a,q) = 1 and satisfying (4.24). Then since a ¢ mgy, such an a and ¢ exist
with 0 < a < ¢ < P. Thus, by Lemma 4.7 we have

Fy(o) < Fj (o) + PiteHy My, (12.24)
where F3 () is as in Definition 4.9(iii). Our hypotheses on ¢ imply that
Z < P°3M, < P2,

and so by (12.23) and (12.24) we deduce that

1
/ |Fy(a) fo()?|da < PYEH Mo Z7Y3Q0w + 1, (12.25)
0

where

- /m IF3 (0) fol0)?] da.
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But by Holder’s inequality,
1< JPa0°,

where

1
J1:/ |f2(a)|2Vda and ng/ |F5 ()P da.
0

Mo

By Lemma 4.10 we have
Jo < P*(PH,M>)*Q5°.
Also, by Hélder’s inequality, when v = 9 we have
3 1
J < (Qg\ll"‘E) 4 <Q§\12+E> 4 ,

and when v = 10 we have

1

1 1
Jl < < ;\124-6) 2 <Q§\13+E> 2 )

Further, when Ao — 18 < 6%1, we apply Lemma 12.2 and obtain

1
/ o) [Pda < QLFe.
0

The lemma now follows on combining (12.25)-(12.30).

(12.26)

(12.27)

(12.28)

(12.29)

(12.30)

We shall find, in future analyses, that it is convenient to have a modified form

of Lemma 12.3.

Lemma 12.4. Let t be a positive integer exceeding 3, and B C (1, P]. Define

Hgp(a) :Z Z Z Ze(alllg(z,h,m)),

h Mi<m;i<M]jR Mgog<mgog<MoR 2
myEB mo€A(P,R)

where the summation is with h satisfying (2.1). Suppose that ¢1 > ¢o >

1
Z=pPM"" (Phag ) !

Then

1
0

where K (10) is defined in the statement of Lemma 12.3.
Proof. By standard Weyl differencing we have

|Hp(a)|* < P}(HyM,)* + P(Ha Ms)?|G (o),

and
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with G(«) defined as in the proof of Lemma 12.3 save with the variable m; ranging
over my € B. Write

Ch={meB: My <m< MR} and Co={me€ A(P,R): My <m < MyR}.

Then recalling (3.1), (4.1) and (4.2), we may follow the proof of Lemma 6.1 to
deduce that

G(a)? < PD(a)Ef (o)~ E5 (o) /P M},
where
D(a) = D2(a; P, §)
F}(a) = Ei(a;480H, P2, 2H,, M;;Cy),
Ej(a) = Ei(a;960H, Py, Hy, My; Ca).
The proof now continues in precisely the same manner as that of Lemma 12.3.

We now divide into cases according to the value of s. As usual we let (A\s) be
an iterate of the sequence converging to (A%), and to simplify formulae we write
0 = ¢1, ¢ = @2, and ¥ = ¢3. We require suitable values for p, for various values
of s. These may be obtained through the use of Lemma 3.2 of Wooley [13]. We
record here for future reference the permissible values

poe = 40.3153894,  por = 42.2641797 and pog = 44.2211063.

(i) s =09.

In this case we use the following scheme.

Fif — Fifi® — Ffy® — %5 = (F5)(f3°%).

! !
16 16
1 2

In executing the iterative process described below, it transpires that ¢ satisfies the
conditions of Lemma 12.1, and moreover good choices for ¢, v and v are t = 26 and
u = v = 27. Therefore, by Lemma 12.1 we have

1
/mmm@ﬂm<ﬁﬁ+w,
0
where
U = PFI?,M?,Z_IMQ;S,

and
~ ~ 1y +l)\ _3
Uy = PH3M3Q3 AT
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We take Z to be as large as is consistent with the conditions of Lemma 12.1. Write
0= i)\lo + %)\11 — A5 — % Then proceeding as described in §2, using the iterative
scheme above, the equations for Ag, 6, ¢ and 1) are determined by

P ~ PMSQ)®, (12.31)
PMLQY ~ (POM L MESQE Q) (12.32)
1
PMOMHNQ) ~ (PO ) MISQF Q) (12.33)
PN, M3 HyQ) = PN H3Q5 (Z—% + Q§> . (12.34)

In our iterative process, we solve the equations (12.32)-(12.34) for ¢ subject to the
constraint (12.1), and taking care to consider the contributions of both U; and Us.
The core of the method will be apparent from the explanation below, where we
pay attention to the situation towards the end of the iteration process. We write
A = )\§ — 10.

For the moment, suppose that our ultimate choices for 6, ¢ and 1 imply that U
is the dominating contribution. Write 61 = pog — 40 and do = por — 42. Suppose,
as is ultimately the case in our iteration, that

LO+¢) << Z(1-0-29).

It follows that (12.1) holds with U = M3. Then the equations (12.32)-(12.34) yield

623 2(1—36 1-3850 1-36
gy =14 928, 2 ) Nt 28

675 2025 81 81
12¢ = 14 (6 — A)p, (12.35)
120 =1+ (6 — A)o. (12.36)
Therefore
o= 6023 4 7502 (0 + ¢)
N 50469 — 66,
and hence
b= 86607 — 60, — 6023A 4 75(6 — A)d6
B 605628 — 7261 — 75(6 — A)dy
and

o 1125270 — 10867 — 122745A + 6023A2 + 661 A — 75(6 — A)dy
B 7267536 — 8646, — 75(6 — A)(18 — A)dy '

On the other hand, if U is the dominating contribution, then equations (12.32)-
(12.34) yield (12.35), (12.36), and

1— 60 +5(1—60—¢—p)=0.
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Then, on writing
a=——, f[f=—— and y7=6-—A,

we obtain

124914+ B8 +a)

144 +9B(12+7) (12.57)

and
= 1+ ~(a— 30)
12498

It transpires that U5 is the dominating contribution. By (12.31), the next iterate
for \g is given by

Ao = A5(1—0)+ 1+ 166,
where 6 satisfies (12.37).
(ii) s = 10 and 11.

In each of these cases we use the following scheme.

Bt — BT — R = (R

In executing the iterative process described below, it transpires that ¢ satisfies the
conditions of Lemma 12.3, and moreover good choices for ¢t and u are ¢t = u = 28.
We divide into cases.

(a) s = 10.
By Lemma 12.3 we have

/O | Fo () fo()'®| da < PE(Uy + Us)

where o )
Uy = PHMyZ75Q5°,
and o, ) .
Uy = PH2M2Q25>\11+5>\12—5_

Write § = %)\11 + %)\12 — A9 — g. Then, proceeding as described in §2 with the

above iterative sequence for s = 10, the equations for A\1g, 6 and ¢ are determined
by
PMo ~ PMISQY, (12.38)
1

PMQY ~ (PHIM)ME*QY QY ) (12.39)

PHlMgQé\g ~ PﬁgMQQSQ (Z_l/s + Qg) . (1240)
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We write A = \g — 12.

For the time being, suppose that our ultimate choices for 8 and ¢ imply that U,
is the dominating contribution. Write 6’ = uos — 44. Then the equations (12.39)
and (12.40) yield

p 1-360 1— 3¢
§— 486 =1+ 20g 4 30°6 30°¢

27 2268 + 84
120 =14 (6 — A)o. (12.41)
Therefore
6= 15848 — (2184 — 30")0
N 108864 — 814’ ’
and hence

B 203952 — 15848A — 816’
T 1319472 — 9908 — 2184A + 36'A°

On the other hand, if Us is the dominating contribution, then equations (12.39)
and (12.40) yield (12.41) and

(12.42)

1—6¢+06(1—60—¢)=0.

Write
_6—A
CT 616
Then
¢_1+5(1—9)
646
and . (1+6)
+ a(l 4+
= 7 12.4
0 12 + «d ( 3)

As the iteration process converges, it transpires that i, provides the dominating
contribution. Then by (12.38), the next iterate for Ajg is given by

To=Xo(1—06)+1+ 180,

with 6 given by (12.42).
(b) s =11
By Lemma 12.3 we have

1
[ 1P| do < Pt + 1),
0

where

Uy = PH M Z7H8Q0™,
Uy = PH>N,Q5 ",
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and K (10) is defined as in the statement of Lemma 12.3. Write 6 = K (10) — A1p.
Then, proceeding as described in §2 with the above iterative sequence for s = 11,
the equations for A1, € and ¢ are determined by

PM o~ PMEOQY, (12.44)

>\1 2 20 )\1 )\1 1/2
PMQY" ~ (P(HL M) ME'Q Q)0 ) (12.45)
PH, M, MyQ)™0 ~ P Ho MpQ)0 (2—1/8 n Qg) . (12.46)

For the time being, suppose that our ultimate choices for 6 and ¢ imply that i/
is the dominating contribution. Then following the pattern set in the case s = 10,

we obtain
203952 — 15848 A — 814’

= 1319472 — 9906’ — 2184A + 36'A

where ¢ = pgg — 44 and A = \jg — 14.
On the other hand, if Us is the dominating contribution, then the equations
(12.45) and (12.46) yield (12.41) and

1—6¢+06(1—60—¢)=0.

Thus, with the notation used for s = 11, we find that 6 is given by (12.43). In
order to make use of these equations, we require a suitable upper bound for A;3. It
suffices to use inequality (k — 2) of §4 of Vaughan [8], which gives

15 15
)\13 S max{)\lg (1 - ﬁ) + 1 —|—24 <ﬁ) ,20} .

As the iteration process converges, it transpires that Us provides the dominating
contribution, and further that L(10) = 14 is permissible. Under such circumstances,
by (12.44) the next iterate for A\;; is given by

)\’11 = A10(1 — 0) + 1+ 200,
where 0 satisfies

2-A
12— A

9:

(iii) s = 12.

In this case we use the following scheme.

3 — Rff?2 — FBfi = (F)(3Y).

|

24
1
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In executing the iterative process described below, it transpires that ¢ satisfies the
conditions of Lemma 12.4, and moreover a good choice for t is t = 28. By Lemma
12.4 we have

1 1
| IF@n@™]da = [ |[Hagm(e) @) da
0 0
< P (Uy + Us),

where
Uy = PH,MZ75Q),

and o
Uy = PHyM,QET.

Write § = K(10) — A19. We now proceed as for the case s = 11. The equations for
A12, 0 and ¢ are given by

PM2 x PMP2Q, (12.47)

1/2
PMiQM ~ (P(M1H1)2M§°Q?12ng) , (12.48)
PH, M, MaQ20 ~ P Ho MoQ20 (2—1/8 n QS) . (12.49)

For each s, define A by
As =25 — 6+ Ag.

Let
E = A2 — 2A11 + Aqo. (12.50)

Then equations (12.48) and (12.49) yield

27 1—300
8—48@5—1-1—%94- YR
Therefore
6= 587 — 8160
4032 — 36’
and hence

7554 — 386 — 587 Ao + £(4032 — 39)
48870 — 81A19 — 360 + £(4032 — 30)

On the other hand, when U is the dominating contribution, the equations (12.48)
and (12.49) yield (12.51) and

1—6¢406(1—6—¢)=0. (12.52)
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Then, on writing

6 — Ajg
6+06 '

o=

we find that Lo e s
g 1tétal+o) (12.53)
124+ &+ ad
As the iteration process converges we find that U is the dominating contribution.

In such circumstances, by (12.47) the next iterate for Ai5 is given by

Mo =A1(1—6)+1+ 226, (12.54)

where 6 is given by (12.53). Moreover, as the iteration process converges, we find
that K(10) = 14 is permissible. Thus 6 = —Ajp, @ = 1, and so by (12.52) and
(12.53), we have

1— Ao(1—0)

and
2+E&E—Aq

T 124E&- A
But by (12.50), we have &€ = A12 — 2A17 + Ajg, and hence

24+ Alg — 2A11
06— . 12.
12 + Ao — 2A44 (12.55)
But by (12.54), / /

22 — A1 6 —Ay
by using the natural induced notation. Therefore, by equating (12.55) and (12.56),
we deduce that the limit of the iteration process for A\;; and A5 satisfies
6— A% 12+ A5, —2A%°

On simplifying this expression, we obtain the equation
Ay (Al —2A7, +7) = 0.
Then since A}, must be non-negative, it follows that Aj, = 0, and hence A}, = 18.

We summarise the values of A, arising from our method in the Appendix.

We now complete the proof of Theorem 1.1 for k = 6. Since A\j5 + 1 — % < 25,
we may conclude by the methods of §5 of Vaughan [8] that G(6) < 25. Moreover,
as is evident, we fail to obtain G(6) < 24 by “c”. This is a problem to which we
return in Vaughan and Wooley [11].
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13. THE HARDY-LITTLEWOOD DISSECTION FOR LARGER k

We now return to the pattern established in the sections preceding §12. Be-
fore considering the iterative procedures themselves, we record a lemma. We shall
merely sketch the proof of this lemma, the details closely resembling those of the
proof of Lemma 6.1. We shall find it convenient here, and in future sections, to
define the quantity Ay by

As =25 — k + Ag.

Lemma 13.1. Suppose that j < k — 4. Let u be a positive integer, and define

T=21+j_k, tZ{(M)U‘Fl]a 9=t—(w)u7
k—3j k=

k=g
k—j+1

and

(0A;—1 + (1= 0)A¢).

Vy =

Then

1
/0 [Ey(0) (@) do < PR H00,Q2+ (M) Q2 + Q)

Proof. On recalling Definition 4.9, we may imitate the analysis of the proof of
Lemma 6.1 to deduce that

1
| 1@ @ e < 1+ I, (13.1)
0
where )
I1=/ |F;(Oé)fj(06)2u’da7
0
and
S _ ~ 1
I, = (Pkkij T H;M; + sup |Fj(oz)|>/ | fi()[*"da. (13.2)
acm; 0

By Holder’s inequality,
If—J—H < (/ |F;<(a)|k—]+1da) It(EIJ)QIt(k—J)(l—G),
0

where )
Is:/ |fi(@)**da (s =t—1,1).
0

Then by Lemma 4.10, o
I < PYH QR (13.3)
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Also, using a Weyl differencing argument, we may follow the pattern established in
Lemmata 6.1 and 12.1 to deduce, from Lemma 4.1 and Corollary 4.2.1, that

sup |Fj(a)| < PYYH;M;(PM;)™". (13.4)

aem;

The proof of the lemma is completed on combining (13.1)-(13.4).

Our iterative procedures will be based on schemes of the following form.

BRI e PP B e BT = (B)(E)
128—2 sziIQ

In order to set the scene, we start by investigating the consequences of the assump-
tion

(As—1 = V1) =1 — - = ¢5) > 7(1 + ¢1), (13.5)
iz

where v,_1 is defined as in the statement of Lemma 13.1. Since 0 < ¢; <
(1 <i<y), it follows that (13.5) holds whenever

k41
Ag 1 —ve_q > 21+J_kk%j' (13.6)

By Lemma 13.1, whenever (13.5) holds, A\s; and ¢ are determined by the equations
PH; 1 M;Q}*" ~ PH;M;Q" " (PM;) ™", (13.7)

] 7 )\sfl 17 2 25—2 )\571 >\sfl 1/2 . -
PH; 1 M;Q;°" =~ (P(Msz) MR @ > (1<i<y), (13.8)
P ~ PMP72Q0 (13.9)

Write A = Ag_1. Then equations (13.7) and (13.8) lead to the equations

k¢j =1—7(1+ ¢1), (13.10)

The recurrence relations (13.11) may be solved, as in Lemma 3.2 of Wooley [13],
to give

E— A\
¢¢=L+<¢j—kiA)< T ) (1<i<j). (13.12)

Write
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Then by (13.10), we have

1 -7 _1 ) 51
k+A+(k R+ )O‘
: :

= . 13.13
! 1+ a9~ ( )

By (13.9), we find that A} is then given by
AS= AT (1= ¢y) + 1+ (25 — 2)61. (13.14)

In order to check that (13.5) holds, we need to estimate vs_;. By inequality
(k —2) of §4 of Vaughan [8] (which, incidentally, is case j = 1 of (13.13)), it follows
that we may assume that for each t,

(13.15)

_ 3—k _ 2—k
AmsmaX{(k ki AUl »0}

k+ 22—k

whence a suitable estimate for vs_; follows. Alternatively, we may apply Lemma
3.2 of Wooley [13], obtaining

Apr1 < A(1—0)+ kO —1, (13.16)

1 1 1 E— AN\
0 = (== .
k+ A ko k+ A 2k

14. THE PROOF OF THEOREM 1.1 FOR SEVENTH POWERS.

where

We divide into cases according to the value of s.
(a) s =13.

We use Lemma 13.1 with j = 3. By reference to the Appendix with s = 12, we
obtain by successive application of (13.15) the bound

Alg — V192 = Alg - %A15 > 02169,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A = A9, and
we obtain the value of \j; given in the Appendix by using (13.14).

(b) s = 14.
We use Lemma 13.1 with j = 2. By successive application of (13.15) we obtain

Alg — V13 = Alg — %A15 - %A]_ﬁ > 01506,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A = A3, and
we obtain the value of A}, given in the Appendix by using (13.14).

(c) s =15.
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We use Lemma 13.1 with j = 2. By successive application of (13.15) we obtain
Ay —via = Ay — A6 — 2447 > 0.1130,
and hence condition (13.6) is met. Then ¢; is given by (13.13) with A = A4, and
we obtain the value of \j; given in the Appendix by using (13.14).
(d) s = 16.
In this case we are forced to modify our argument by using the following scheme.
Ff° — Rfi° — Bff = (F2)(f3°)

32
1

We may apply Lemma 13.1 to estimate the final integral implicit in this scheme.
Thus, as in the case s = 15 we find that (13.6) is satisfied, and hence A, ¢1 and
¢ are determined by the equations (13.7) with s = 15 and j = 2,

s 21 728 WA 11 A6 1/2
PM, Q1" ~ P(MyHy) M3"Q5" Q7 )
and (13.9) with s = 16. Write A = Ay and € = Mg — 2A]5 + A\j,. Then the
equations for Aig, ¢1 and ¢o are determined by the equations (13.10) and
2kpr =1+ E(1 — 1) + (K — A)gpa.

Thus
_ 217+ 1128 — 15A

P 5T g A
By (13.9), we find that the next iterate for A4 is given by
N6 = Als(1 = ¢1) + 1+ 306

The converged value of A}y is given in the Appendix.

Let X = P77 and Z = PX L. Define the generating function h(«a) by
h(a) = Z e(az®), (14.1)

xzeC
where
C={rv:x=pz, X)2<p< X,z€ A(Z,Z")}.
Let s be an even integer, and write s = 2r. Define m to be the set of real numbers
ain ((2k)~1P'=F 1+ (2k)~!P1=*] with the property that whenever a € Z, ¢ € N,
(a,q) = 1 and |a — a/q] < ¢ 1 X17*(rZ*)~! then one has ¢ > X. Then the
argument of §9 of Vaughan [8] gives

sup |h(a)| < Pt (14.2)
aem
where ko (k1A
=2 > /s 14.
2s(2k — 1) (14.3)

By (14.2) with s = 12, and using the value of \j2 given in the Appendix, we have
o > 0.01679703. Moreover, \js +1 — o < 26. Then by Theorem 4 of Vaughan and
Wooley [10], we may finally conclude that G(7) < 33.
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15. THE PROOF OF THEOREM 1.1 FOR EIGHTH POWERS

We divide into cases according to the value of s.

(a) s = 16.
We use Lemma 13.1 with j = 3. By reference to the Appendix with s = 15, we
obtain by successive application of (13.15) the bound

A15 — V15 = A15 - %Alg > 01563,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A = A;5, and
we obtain the value of \j; given in the Appendix using (13.14).

(b) s = 17.
We use Lemma 13.1 with j = 3. By reference to the Appendix with s = 16, we
obtain by successive application of (13.15) the bound

A16 — V1g = A]_ﬁ — %Alg — %AQO > 01288,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A = A4, and
we obtain the value of A\j; given in the Appendix using (13.14).

(c) s =18.
We use Lemma 13.1 with j = 2. By reference to the Appendix with s = 17, we
obtain by successive application of (13.15) the bound

A17 — V17 = A17 — %Alg — %AQO > 00937,
and hence condition (13.6) is met. Then ¢; is given by (13.13) with A = Ay7, and

we obtain the value of A\jg given in the Appendix using (13.14).

We now complete the proof of Theorem 1.1 for k£ = 8 as in §14. Applying (14.3)
with s = 16, we obtain o > 0.01381643. Moreover, Ajg + 7(1 — o) < 35. Then by
Theorem 4 of Vaughan and Wooley [10], we may finally conclude that G(8) < 43.

16. THE PROOF OF THEOREM 1.1 FOR NINTH POWERS

We divide into cases according to the value of s.

(a) s =19.
We use Lemma 13.1 with j = 4. By reference to the Appendix with s = 18, we
obtain by successive application of (13.16) the bound

AlS — V18 = A18 — %A21 - %AQQ > 01659,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A = A;g, and
we may obtain the value of A\]4 given in the Appendix using (13.14).

(b) s = 20.
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We use Lemma 13.1 with j = 4. By reference to the Appendix with s = 19, we
obtain by successive application of (13.16) the bound

Alg — V19 = Alg — %AQQ — %AQE} > 01307,

and hence condition (13.6) is met. Then ¢, is given by (13.13) with A = A9, and
we may obtain the value of A3, given in the Appendix using (13.14).

(c) s =21.
We use Lemma 13.1 with j = 3. By reference to the Appendix with s = 20, we
obtain by successive application of (13.16) the bound

AQO — Vop = AQO - %Agg - %A24 > 00912,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A = Ay, and
we may obtain the value of A3, given in the Appendix using (13.14).

(d) s = 22.

We use Lemma 13.1 with j = 3. By reference to the Appendix with s = 21, we
obtain by successive application of (13.16) the bound

Agl — V21 = Agl — %A24 - %AQE) > 00703,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A = Ay, and
we may obtain the value of A}, given in the Appendix using (13.14).

(e) s = 23.

We use Lemma 13.1 with j = 3. By reference to the Appendix with s = 22, we
obtain by successive application of (13.16) the bound

Aoy — Vg9 = Aoy — %A25 — %AQG > 0.0527,

and hence condition (13.6) is met. Then ¢; is given by (13.13) with A = Ays, and
we may obtain the value of \j5 given in the Appendix using (13.14).

We now complete the proof of Theorem 1.1 for K = 9 as in §14. Applying (14.3)
with s = 20, we obtain ¢ > 0.01150790. Moreover, A\5; + 5(1 — o) < 42. Then by
Theorem 4 of Vaughan and Wooley [10], we may finally conclude that G(9) < 51.

APPENDIX. NUMERICAL VALUES FOR PARAMETERS

In this appendix we display in tabular form the numerical values of the param-
eters arising in our iterative processes. The displayed figures are the converged
values, calculated to 15 significant figures on a computer, and rounded up in the
last digit displayed. We also give the numerical values of the o(k) arising from
(14.3), rounded down in the last digit displayed.

k=5.
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s
3
4
)
6
7
8

We note also that

Further, although worse than the corresponding estimate arising from Weyl’s in-

equality, we have

As
3.1362571
4.4386563
5.9250797
7.5417546
9.2727289

11.0773627

So(P,R) < P'3.

o(5) > 0.03257326.

b1
0.06812854

0.10559577
0.13658426
0.15133422
0.16396009
0.17021105

R. C. VAUGHAN AND T. D. WOOLEY

P2

0.07226662
0.11310401
0.14346470
0.14377599
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As
3.0909091
4.3333334
5.7246965
7.2315633
8.8505716

10.5604127
12.3536709
14.2030055
16.0860412
18.0000000

1
0.04545455

0.08333334
0.10673541
0.11855692
0.12981369
0.13784851
0.14583058
0.15042244
0.15232648
0.15454265

b2

0.05080042
0.08751084
0.10763684
0.12076716
0.13787203
0.14258278
0.14281844
0.14289604

3

0.05551767
0.08562337
0.12031506
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We note also that Sio(P, R) < P8+ and although worse than Weyl’s inequal-
ity, o(6) > 0.02301567.

0 3O T W»

9

10
11
12
13
14
15
16

As
3.0639191
4.2641175
5.5891167
7.0143820
8.5410894

10.1526323
11.8469485
13.6055676
15.4242973
17.2932208
19.1987053
21.1230182
23.0625298
25.0164264

b1
0.03195955

0.06818559
0.08699398
0.09641272
0.10564538
0.11202654
0.11873997
0.12329153
0.12803790
0.13214156
0.13501034
0.13590250
0.13661685
0.13749920

P2

0.03541170
0.06937556
0.08803450
0.09889245
0.10797294
0.11453127
0.12028445
0.12611292
0.13272313
0.13271516
0.13270878
0.13270091

¢3

0.04058919
0.06902202
0.08946112
0.09898491
0.10870656
0.11717668

P4

0.04150797
0.06609542
0.08585428
0.10266360

We have o(7) > 0.01679703, which is superior to Weyl’s inequality.
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As
3.0496111
4.2289285
5.5116307
6.8806000
8.3284883
9.8579814

11.4648635
13.1382531
14.8742074
16.6623509
18.4948992
20.3659701
22.2689476
24.1954446
26.1370265
28.0945483

R. C. VAUGHAN AND T. D. WOOLEY

P1
0.02480553

0.06077755
0.07496603
0.08220565
0.08748844
0.09336014
0.09880825
0.10304140
0.10725466
0.11060434
0.11346253
0.11606386
0.11828320
0.11984099
0.12064517
0.12177604

P2

0.03518923
0.06261215
0.07303331
0.08199712
0.09013287
0.09589809
0.10102623
0.10540355
0.10890495
0.11215719
0.11517483
0.11867153
0.11920252
0.12061807

¢3

0.02548707
0.05500300
0.07343430

0.08328930 0.05353266
0.09178812 0.07307451
0.09753530 0.08383402 0.05196286
0.10229102 0.09095506 0.06779771
0.10668910 0.09798016 0.08143693
0.11083494 0.10444347 0.09360961

0.11625125
0.11624496

P4

We have o(8) > 0.01381643, which is superior to Weyl’s inequality.

b5
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9
10
11
12
13
14
15
16
17
18
19
20
21
22

As
3.0358052
4.1822894
5.4201075
6.7434120
8.1447208
9.6154494

11.1526889
12.7545442
14.4174241
16.1349528
17.9006237
19.7094207
21.5537941
23.4293887
25.3311019
27.2542905
29.1946817
31.1468279
33.1102975
35.0806499
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b1
0.0179026

0.0494179
0.0622934
0.0705922
0.0763440
0.0803939
0.0841468
0.0878966
0.0914891
0.0946287
0.0973520
0.0998592
0.1018474
0.1036673
0.1052100
0.1064944
0.1075260
0.1081331
0.1088277
0.1091547

23 37.0566117 0.1094208

P2

0.0120224
0.0500843
0.0659715
0.0729087
0.0774905
0.0819482
0.0863641
0.0902411
0.0934860
0.0964579
0.0989335
0.1010817
0.1030531
0.1047428
0.1069631
0.1074800
0.1083112
0.1085283
0.1087045

¢3

0.0299044
0.0537809
0.0640395
0.0717050
0.0785379
0.0839157
0.0881279
0.0919939
0.0948926
0.0976837
0.1001422
0.1023855
0.1058045
0.1061450
0.1072611
0.1072599
0.1072590

REFERENCES

P4

0.0201554
0.0452838
0.0622043
0.0725554
0.0791991
0.0851563
0.0889089
0.0925898
0.0960512
0.0990896
0.1034200
0.1034158

b5

0.0447782
0.0601626
0.0722296
0.0782184
0.0840732
0.0894131
0.0941699

We have 0(9) > 0.01150790, which is superior to Weyl’s inequality.
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b6

0.0413991
0.0547876
0.0669177
0.0771596
0.0856692
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